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1. Summary
In the supplementary material we present our data aug-

mentation technique, which uses view synthesis to generate
more diverse training examples. We give more insight into
our proposed connectivity metric, and finally show more vi-
sual and quantitative results.

2. Training
During training of the method, we apply artificial depth-

wise motion as a data augmentation. With the flat world
assumption, it is possible to calculate the new pixel loca-
tion of a real world point if the ego vehicle moves β in the
depth direction. Let the original pixel row and column co-
ordinates be (m0, n0) and the new coordinates be (m1, n1).
Then n0 = (n1 − dx)fC/(fC − m1β + dyβ) + dx and
m0 = (m1 − dy)fC/(fC −m1β + dyβ) + dx where f is
the focal length, C is the camera height and (dx, dy) are the
frame center coordinates. We resample the original image
and translate the ground truth (GT) object and centerline
points by β.

3. Connectivity metric
The mathematical definition of our connectivity metric

and how true positives, false positives and false negatives
are defined, is given in the main text. Here we would like
to summarize the definition in words. Therefore, let us first
give the mathematical definition: Let the estimated binary
incidence matrix be E and the GT incidence matrix be I .
Let M(i) be the index of the target that the ith estimation
is matched to and S(n) be the set of indices of estimations
that are matched to target n. A positive entry Eij is a true
positive if (M(i) == M(j)) | (I(M(i),M(j)) == 1),
and a false positive otherwise. A false negative is a pos-
itive entry Im,n where @ (i, j) : ((i ∈ S(m)) & (j ∈
S(n)) & (Ei,j == 1)).

In words, if two estimated centerlines are associated,
there are two possible ways for this association to be true:

• Both estimations are matched with the same target.

• The distinct targets that the two estimated centerlines
are matched to are, indeed, associated according to the
GT incidence matrix.

A miss, or a false negative, is present if there is a positive
entry (m,n) in the GT incidence matrix I and at least one
of the following conditions hold:

• No estimation was matched with target m.

• No estimation was matched with target n.

• Among all pairs of estimated centerlines (i, j) where i
is matched with target m and j with n, there is no pair
whose association estimate is positive.

4. Lane graph results
In the main paper we presented visual results for the lane

graph, here we show further examples (see Fig. 1) and ex-
plain how we visualized the lane graphs.

4.1. Lane graph merging method

Whenever the network is estimating a full lane graph
(this excludes PINET, which does not estimate a graph) we
merge the predicted lane graph for visualization. The merg-
ing works by post processing the Bezier control points and
the incidence matrix estimation in the following way:

• Extract all junction points where at least 2 centerlines
meet.

• For all the junctions, get the start point locations of
outgoing lines and end points of incoming lines.

• Concatenate all the junction points and take the mean,
producing one (x,y) pair for each junction.

• Replace the start points of outgoing and endpoints of
incoming lines with their respective junction locations.

Note that, this process does not change the underlying
directed graph but it is useful for visualization. It is possi-
ble to formulate more advanced post-processing steps, for
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Figure 1. Sample centerline estimates. PINET boundary estimations are shown on the image. Our method produces the best lane graph
representation. The detailed statistical results for the scenes in this figure are given.

example to compute the exact junction point locations one
could consider the confidence of centerlines. However, this
is beyond the scope of this work.

4.2. Visual results

First of all, we would like to emphasize that the results
are shown for the whole target region of interest, whether it
is occluded or not. We observed that sometimes, the meth-
ods can estimate lane graph structure in the occluded re-
gions as well. Moreover, due to difficulty in establishing the
occluded regions precisely, we have opted for presenting the
results in whole field-of-view. Therefore, the results should
be interpreted taking this into consideration. As stated in the
main text and shown in Fig. 6, we have complied the statis-
tical results for each method on each given image for each
metric. Below, we present an extended version of Fig. 6,
which includes four (instead of two) traffic scenes. Addi-
tionally to the visual results of the four traffic scenes we
give the quantitative results in Tab. 1-4, and discuss the re-
sults.

In Scene 1, it can be seen that all methods manage to
detect the straight lanes more or less accurately. However,
only our method can detect the left turn. Moreover, we see
that Poly(GT) produce inaccurate estimations in that region.

Method M-Pre M-Rec Detect C-Pre C-Rec C-IOU
PINET 49 50 20 - - -

Poly(Est) 37.9 33.2 60.0 0.0 0.0 0.0
Ours 60.0 53.4 60 75.0 60.0 50.0

Poly(GT) 54.5 53.5 70.0 66.7 44.4 36.4
Table 1. Scene 1 Results

Yet, because our method estimates the turn in a slightly
wrong distance, both our method and Poly(GT) suffer sim-
ilarly in the precision-recall metric. The proposed connec-
tivity metric, however, clearly favors our estimation which
is also backed by visual inspection.

Method M-Pre M-Rec Detect C-Pre C-Rec C-IOU
PINET 38 39 20 - - -

Poly(Est) 70.4 62.5 20.0 0.0 0.0 0.0
Ours 84.5 77.7 50.0 60.0 33.3 27.3

Poly(GT) 53.4 66.9 70.0 50.0 25.0 20.0
Table 2. Scene 2 Results

In Scene 2, Poly(GT) produces many false lines that are
matched with straight road segments. This causes a de-
crease in precision-recall. Our method misses the left turn
completely, which decreases the detection score, but it faith-
fully represent the straight lanes. It should be noted that
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Figure 2. Some additional examples with object estimations also shown for our method. It can be seen that our method produces the best
graphs.

Poly(Est) performs better than Poly(GT) in precision-recall
in this image. Note that PINET can not handle the parked
cars and generates several centerlines in the carpark area.

Method M-Pre M-Rec Detect C-Pre C-Rec C-IOU
PINET 64 75 8 - - -

Poly(Est) 32.9 30.7 26.1 100 4.4 4.4
Ours 48.4 47.6 74.0 82.6 67.9 59.4

Poly(GT) 62.2 62.4 65.0 48.1 48.1 31.7
Table 3. Scene 3 Results

Scene 3 shows a complicated road network and the left
and right turns are barely visible. However, our method
manages to produce a good estimate. The small differ-
ences in the exact location of the lines results, however,
in lower precision-recall than Poly(GT). PINET only finds
the straight lines as expected while Poly(Est) detects some
true initial points that are the beginnings of the turns but the
Polygon-RNN head fails to produce the lanes. Again, we
see that the connectivity metric demonstrates the superior-
ity of the proposed method.

In Scene 4, most of the crossroads is not visible. PINET
mistakenly estimates 3 lanes (4 lane boundaries) while the
rightmost one is actually a carpark area. Poly(Est) detects
the lines but estimates them to be close to each other and in

Method M-Pre M-Rec Detect C-Pre C-Rec C-IOU
PINET 39 46 30 - - -

Poly(Est) 80.2 81.7 30 100 60.0 60.0
Ours 54.9 52.7 60.0 100 66.7 66.7

Poly(GT) 64.4 69.6 90 55.6 83.3 50.0
Table 4. Scene 4 Results

the same direction. Poly(GT) estimate suffers from faulty
association where the rightmost lane is distorted due to a
recalculated junction point location. Our method produces
the initial part of the turns but fails to estimate the whole
crossroads. In this scene Poly(Est) produces the best results
except for the detection score. This is due to the fact that
is it misses the whole right part of the image, but produces
reasonable estimates of the left part.

4.3. Additional visual results

In Fig 2, we present some additional results with object
estimations included.

In the first scene, the GT shows many cars travelling
in the horizontal direction but upon inspection of the im-
age, we observe that part of image is not clear. Thus our
method’s object estimates are reasonable. The road network
estimate of our method is vastly superior to all other base-



lines including Poly(GT).
In the second image, our method produces all 4 lanes

faithfully. Poly(GT) also produces decent estimates. Our
method missed the cars on the right side of the scene, but
we see that the rain drop is making that region non-visible.

Scene 3 provides a relatively easy task for all methods.
PINET, unsurprisingly, produces an accurate estimate but
Poly(Est) failed to produce the lanes. While Poly(GT) man-
ages to somewhat estimate the direction of the lanes, it pro-
duces faulty structures in the bottom part of the FOV. Our
method produces very accurate estimations for both center-
lines and the car.

The last scene demonstrates a very complex crossroads
scene. All 4 directions of the crossroads are visible in the
image. This results in Poly(Est) producing good estimates,
capturing the essence of the lane graph. The Poly(GT) es-
timate is denser than Poly(Est) and covers a larger area of
the true lane graph but it fails to handle the junctions prop-
erly. Our method produces a better lane graph estimate but
fails especially in the left side of the image. Our object es-
timates are accurate, with the exception of the truck which
is labelled as car.


