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1. More Details of the Network Architectures

In this section, we give the detailed architecture of the
models evaluated on the CLEVR-CoGenT, the VQA-CP v2
and the VQAv2 datasets.

1.1. CLEVR-CoGenT

As shown in Figure 1, we introduce the linguistically
routing into the convolution layers within the 4 residual
blocks. The questions and the words are embedded by a
GRU. The words embedding are fused with the 14 × 14 ×
1024 extracted image feature. The fused feature is fed into 4
residual blocks. Each block contains a linguistically routing
convolution with 3× 3× 144 kernel, a batch normalization,
a multiplication with the transformed question embedding,
a ReLU activation, and a residual connection. The classifier
convolves the 144-dimensional feature maps to 512 dimen-
sions and feeds the result into two fully connected layers to
predict the answer.

1.2. VQA-CP v2 and VQAv2

For the VQA-CP v2 dataset, we modified the Modular
Co-Attention Networks (MCAN) [10] and introduce the lin-
guistically routing in the guided-attention blocks. As shown
in Figure 2, The question words are embedded with 6 self-
attention blocks. Each block has 512 hidden dimension
and 8 attention heads. The image is firstly pass through 3
guided-attention blocks. Then we replace the feed-forward
layer in the last 3 guided-attention blocks with the linguis-
tically routing feed-forward layer. The guided-attention
blocks also have 512 hidden dimension, 8 attention heads,
and 36 image objects. The classifier is the same as the
MCAN [10]. It performs attention on question words and
36 image objects, then obtains a 1024-dimensional vector.
The classifier project the 1024-dimensional vector to 3129-
dimension, where the 3129 is the number of the answer can-
didates.

Figure 1: The overall model architecture for the CLEVR-
CoGenT dataset.

2. More Experimental Results

We also evaluate our proposed method on the CLEVR
dataset to verify its performance on in-domain test data.

CLEVR [4] is a synthesized dataset designed to achieve
minimal dataset biases. It consists of 100, 000 images,
853, 554 questions, and the corresponding image scene
graphs and questions’ functional program layouts. This
dataset is similar to the CLEVR-CoGenT but without the
swapped color palettes. We use the exactly same model
architectures and training hyper-parameters as we used in
CLEVR-CoGenT.



Figure 2: The overall model architecture for the VQA-CP v2 dataset.

Method Count Exist
Compare
Integer

Compare
Attribute Query Overall

N2NMN* [2] 68.5 85.7 84.9 88.7 90.0 83.7
IEP* [5] 92.7 97.1 98.7 98.9 98.1 96.9
TbD+reg+hres* [6] 97.6 99.2 99.4 99.6 99.5 99.1
NS-VQA* (270 programs) [9] 99.7 99.9 99.9 99.8 99.8 99.8
CNN+LSTM+SAN [5] 59.7 77.9 75.1 70.8 80.9 73.2
LBP-SIG [11] 61.3 79.6 80.7 76.3 88.6 78.0
Dependency Tree [1] 81.4 94.2 81.6 97.1 90.5 89.3
CNN+LSTM+RN [8] 90.1 97.8 93.6 97.1 97.9 95.5
CNN+GRU+FiLM [7] 94.5 99.2 93.8 99.0 99.2 97.6
MAC [3] 97.1 99.5 99.1 99.5 99.5 98.9
LR-Capsule(ours) 95.6 98.7 97.2 98.8 98.8 97.9

Table 1: Comparison of question answering accuracy on the CLEVR dataset. (*) indicates that the model has been trained
with program annotations.

2.1. Results

Table 1 shows the performance of all the compared meth-
ods on the CLEVR test set. The end-to-end modular net-
work [2], program execution engine [5], transparency by de-
sign [6], and neural symbolic visual question answering [9]
are referred to as “N2NMN”, “IEP”, “TbD” and “NS-
VQA”, respectively. All these methods use the functional
programs’ layout as the extra training signal. “N2NMN”,
“IEP” and “TbD” achieve their best results by using all of
the program layouts. Although “NS-VQA” uses only 3 sam-
ples from each of the 90 question families, it leverages the
scene graphs to train a scene parser. “N2NMN’, “IEP” and
“NS-VQA” also have variants that use different numbers of
programs during training, and it has been shown that their
performance degrades if fewer program layout examples
are used. In contrast, our method can achieve a compara-
ble state-of-the-art performance without using any dataset-
specific layout on in-domain test data.

3. Analysis of capsules’ Encoded Words
To examine whether the capsules can be activated to

represent different samples dynamically, we explore which

words are encoded by the capsules in different layers.
Specifically, given a capsule, we rank its encoded words by
frequency and present the top-10 words in Figure 3 and Fig-
ure 4. The x-axis represents the words and the y-axis rep-
resents their frequency. We also remove some conjunction,
preposition and determiner words, including “the” “a” “an”
“of” “is” “are” “it” “there” “that” “do” “does” “to” “have”
“has” “or”.

As shown in Figure 3, on the CLEVR-CoGenT dataset,
the height 1 capsule 0 mostly encodes words that describe
shape and material; the height 1 capsule 1 mostly encodes
words that indicate the position; the height 1 capsule 3
mostly encodes words that describe the object size. In
height 4, the capsule 0 and capsule 5 encode “what” “ob-
ject” most, the capsule 1 encodes the word “number” and
the capsule 2 encodes the “as” “same”. It suggests that dif-
ferent capsules may be used to encode different types of
questions. However, in height 4, the capsule 8 barely en-
codes words, and the capsule 4 hasn’t been activated at all.
At a higher level, it may be better to lower the number of
capsules but increase each capsule’s capacity to better en-
code the rich high-level semantic. Similarly in Figure 4, on
the VQA-CP v2 dataset, different capsules have encoded



different words. The height 1 capsule 0 mostly encodes the
“person” and actions; the height 1 capsule 6 encodes differ-
ent kinds of animals.



(a) Height 1

(b) Height 2



(c) Height 3

(d) Height 4

Figure 3: The 10 most frequent words encoded by each capsule on CLEVR-CoGenT.



(a) Height 1



(b) Height 2



(c) Height 3

Figure 4: The 10 most frequent words encoded by each capsule on VQA-CP v2.



4. More Visualisation Results
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