Supplementary Material for
Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron'»2
Julien Mairal?

I Facebook AI Research

A. Additional Results

k-NN classification. In Tab. 1, we evaluate the frozen rep-
resentations given by ResNet-50 or ViT-small pre-trained
with DINO with two evaluation protocols: linear or k-NN.
For both evaluations, we extract representations from a pre-
trained network without using any data augmentation. Then,
we perform classification either with weighted k-NN or with
a linear regression learned with cyanure library [18]. In
Tab. 1 we see that ViT-S accuracies are better than accuracies
obtained with RN50 both with a linear or a k-NN classifier.
However, the performance gap when using the k£-NN evalua-
tion is much more significant than when considering linear
evaluation. For example on ImageNet 1%, ViT-S outper-
forms ResNet-50 by a large margin of +14.1% with k-NN
evaluation. This suggests that transformers architectures
trained with DINO might offer more model flexibility that
benefits the k-NN evaluation. K-NN classifiers have the
great advantage of being fast and light to deploy, without
requiring any domain adaptation. Overall, ViT trained with
DINO provides features that combine particularly well with
k-NN classifiers.

Table 1: k-NN and linear evaluation for ViT-S/16 and ResNet-
50 pre-trained with DINO. We use ImageNet-1k [24] (“Inet”),
Places205 [32], PASCAL VOC [13] and Oxford-102 flowers
(“FLOWERS?”) [19]. VIiT trained with DINO provides features
that are particularly k-NN friendly.

Logistic k-NN

RN50 VIT-S A RN50 VIT-S A
Inet 100% 721 757 3.6 675 745 1.0
Inet 10% 678 722 44 593 69.1 98
Inet 1% 551 645 94 472 613 141
Pl. 10% 534 521 -13 469 486 1.7
Pl. 1% 465 463 -0.2 392 413 21
VOCO07 889 892 03 849 880 3.1
FLOWERS 956 964 0.8 879 89.1 12
Average A 24 5.6

Hugo Touvron
Piotr Bojanowski!

3

2 Inria*

Ishan Misra! Hervé Jegou!

Armand Joulin!

3 Sorbonne University

Table 2: ImageNet classification with different pretraining.
Top-1 accuracy on ImageNet for supervised ViT-B/16 models using
different pretrainings or using an additional pretrained convnet to
guide the training. The methods use different image resolution
(“res.”) and training procedure (“tr. proc.”), i.e., data augmentation
and optimization. “MPP” is Masked Patch Prediction.

Pretraining

method data res. tr. proc. Top-1
Pretrain on additional data

MMP JFT-300M 384 [12] 79.9
Supervised JFT-300M 384 [12] 84.2
Train with additional model

Rand. init. - 224 [28] 83.4
No additional data nor model

Rand. init. - 224 [12] 77.9
Rand. init. - 224 [28] 81.8
Supervised ImNet 224 [28] 81.9
DINO ImNet 224 [28] 82.8

Self-supervised ImageNet pretraining of ViT. In this ex-

periment, we study the impact of pretraining a supervised
ViT model with our method. In Tab. 2, we compare the
performance of supervised ViT models that are initialized
with different pretraining or guided during training with an
additional pretrained convnet. The first set of models are
pretrained with and without supervision on the large curated
dataset composed of 300M images. The second set of mod-
els are trained with hard knowledge distillation from a pre-
trained supervised RegNetY [22]. The last set of models do
not use any additional data nor models, and are initialized ei-
ther randomly or after a pretraining with DINO on ImageNet.
Compare to random initialization, pretraining with DINO
leads to a performance gain of +1%. This is not caused by a
longer training since pretraining with supervision instead of
DINO does not improve performance. Using self-supervised
pretraining reduces the gap with models pretrained on extra

Table 3: Low-shot learning on ImageNet with frozen ViT fea-
tures. We train a logistic regression on frozen features (FROZEN).
Note that this FROZEN evaluation is performed without any fine-
tuning nor data augmentation. We report top-1 accuracy. For
reference, we show previously published results that uses finetun-
ing and semi-supervised learning.

Top 1

Method Arch Param. 1% 10%
Self-supervised pretraining with finetuning

UDA [30] RN50 23 - 68.1
SimCLRV2 [7] RNS50 23 579 684
BYOL [15] RNS50 23 53.2 68.8
SwAV [5] RN50 23 53.9 70.2
SimCLRv2 [9] RN50w4 375 63.0 744
BYOL [15] RN200w2 250 712 777

Semi-supervised methods

SimCLRv2+KD [7] RN50 23 600 705
SWAV+CT [2] RNS50 23 - 708
FixMatch [26] RNS50 23 - 715
MPL [20] RNS50 23 - 739

SimCLRv2+KD [7] RN152w3+SK 794 76.6 809

Frozen self-supervised features
DINO -FROZEN ViT-S/16 21 645 722

data or distilled from a convnet.

Low-shot learning on ImageNet. We evaluate the fea-
tures obtained with DINO applied on ViT-S on low-shot
learning. In Tab. 3, we report the validation accuracy of a
logistic regression trained on frozen features (FROZEN) with
1% and 10% labels. The logistic regression is trained with
the cyanure library [18]. When comparing models with a
similar number of parameters and image/sec, we observe that
our features are on par with state-of-the-art semi-supervised
models. Interestingly, this performance is obtained by train-
ing a multi-class logistic regression on frozen features, with-
out data augmentation nor finetuning.

B. Methodology Comparison

We compare the performance of different self-supervised
frameworks, MoCo-v2 [8], SWAV [5] and BYOL [15] when
using convnet or ViT. In Tab. 4, we see that when trained with
ResNet-50 (convnet), DINO performs on par with SWAV
and BYOL. However, DINO unravels its potential with ViT-
S (ViT), outperforming MoCo-v2, SwWAV and BYOL by
large margins (+4.3% with linear and +6.2% with k-NN
evaluations). In the rest of this section, we perform ablations
to better understand the performance of DINO applied to ViT.
In particular, we provide a detailed comparison with methods
that either use a momentum encoder, namely MoCo-v2 and
BYOL, and methods that use multi-crop, namely SWAV.

Table 4: Methodology comparison for DEIT-small and ResNet-
50. We report ImageNet linear and k£-NN evaluations validation
accuracy after 300 epochs pre-training. All numbers are run by us
and match or outperform published results.

ResNet-50 ViT-small
Method Linear k-NN Linear k-NN
MoCo-v2 71.1 62.9 71.6 62.0
BYOL 72.7 65.4 71.4 66.6
SwAV 74.1 65.4 71.8 64.7
DINO 74.5 65.6 76.1 72.8

Relation to MoCo-v2 and BYOL. In Tab. 5, we present
the impact of ablating components that differ between DINO,
MoCo-v2 and BYOL.: the choice of loss, the predictor in the
student head, the centering operation, the batch normaliza-
tion in the projection heads, and finally, the multi-crop aug-
mentation. The loss in DINO is a cross-entropy on sharpened
softmax outputs (CE) while MoCo-v2 uses the InfoNCE con-
trastive loss (INCE) and BYOL a mean squared error on
12-normalized outputs (MSE). No sharpening is applied with
the MSE criterion. Though, DINO surprisingly still works
when changing the loss function to MSE, but this signifi-
cantly alters the performance (see rows (1, 2) and (4, 9)).
We also observe that adding a predictor has little impact (1,

). However, in the case of BYOL, the predictor is critical
to prevent collapse (7, &) which is consistent with previous
studies [9, 15]. Interestingly, we observe that the teacher
output centering avoids collapse without predictor nor batch
normalizations in BYOL (7, 9), though with a significant
performance drop which can likely be explained by the fact
that our centering operator is designed to work in combina-
tion with sharpening. Finally, we observe that multi-crop
works particularly well with DINO and MoCo-v2, removing
it hurts performance by 2 — 4% (! versus 4 and, 5 versus 0).
Adding multi-crop to BYOL does not work out-of-the-box
(7, 10) as detailed in Appendix E and further adaptation may
be required.

Relation to SWAV. In Tab. 6, we evaluate the differences
between DINO and SwAV: the presence of the momentum
encoder and the operation on top of the teacher output. In
absence of the momentum, a copy of the student with a stop-
gradient is used. We consider three operations on the teacher
output: Centering, Sinkhorn-Knopp ora Softmax
along the batch axis. The Softmax is similar to a single
Sinkhorn-Knopp iteration as detailed in the next paragraph.
First, these ablations show that using a momentum encoder
significantly improves the performance for ViT (3 versus 6,
and 2 versus 5). Second, the momentum encoder also avoids
collapse when using only centering (row |). In the absence

Table 5: Relation to MoCo-v2 and BYOL. We ablate the com-
ponents that differ between DINO, MoCo-v2 and BYOL.: the loss
function (cross-entropy, CE, versus InfoNCE, INCE, versus mean-
square error, MSE), the multi-crop training, the centering operator,
the batch normalization in the projection heads and the student
predictor. Models are run for 300 epochs with ViT-S/16. We report
top-1 accuracy on ImageNet linear evaluation.

Method Loss multi-crop Center. BN Pred. Top-1

DINO CE v v 76.1
- MSE v v 62.4
- CE v v v 75.6
- CE v 72.5
MoCov2 INCE Ve 71.4

INCE v v 73.4
BYOL MSE v v 71.4
— MSE v 0.1
- MSE v 52.6
- MSE v v v 64.8

Table 6: Relation to SWAV. We vary the operation on the teacher
output between centering, a softmax applied over the batch di-
mension and the Sinkhorn-Knopp algorithm. We also ablate the
Momentum encoder by replacing it with a hard copy of the student
with a stop-gradient as in SWAV. Models are run for 300 epochs
with ViT-S/16. We report top-1 accuracy on ImageNet linear evalu-
ation.

Method Momentum Operation Top-1
DINO v Centering 76.1
- v Softmax (batch) 75.8
- v Sinkhorn-Knopp 76.0
- Centering 0.1
- Softmax (batch) 72.2
SwAV Sinkhorn-Knopp 71.8

of momentum, centering the outputs does not work (4) and
more advanced operations are required (5, 6). Overall, these
ablations highlight the importance of the momentum en-
coder, not only for performance but also to stabilize training,
removing the need for normalization beyond centering.

Details on the Softmax (batch) variant. The itera-
tive Sinkhorn-Knopp algorithm [10] used in SWAV [5] is
implemented simply with the following PyTorch style code.
x is n-by-K

tau is Sinkhorn regularization param

x = exp(x / tau)

for _ in range (num_iters): # 1 iter of Sinkhorn
total weight per dimension (or cluster)
c = sum(x, dim=0, keepdim=True)
x /= ¢

total weight per sample
n = sum(x, dim=1, keepdim=True)
x sums to 1 for each sample (assignment)
X /= n
When performing a single Sinkhorn iteration

(num_iters=1) the implementation can be highly
simplified into only two lines of code, which is our
softmax (batch) variant:

x = softmax(x / tau, dim=0)
x /= sum(x, dim=1, keepdim=True)

We have seen in Tab. 6 that this highly simplified variant
of SWAV works competitively with SwAV. Intuitively, the
softmax operation on the batch axis allows to select for
each dimension (or “cluster’) its best matches in the batch.

Validating our implementation. We observe in Tab. 4
that our reproduction of BYOL, MoCo-v2, SWAV matches
or outperforms the corresponding published numbers with
ResNet-50. Indeed, we obtain 72.7% for BYOL while [15]
report 72.5% in this 300-epochs setting. We obtain 71.1%
for MoCo after 300 epochs of training while [8] report 71.1%
after 800 epochs of training. Our improvement compared to
the implementation of [8] can be explained by the use of a
larger projection head (3-layer, use of batch-normalizations
and projection dimension of 256).

Concurrent work CsMI. The concurrent work CsMI [31]
also exhibits strong performance with simple k-NN classi-
fiers on ImageNet, even with convnets. As DINO, CsMI
combines a momentum network and multi-crop training,
which we have seen are both crucial for good k-NN perfor-
mance in our experiments with ViTs. We believe studying
this work would help us identifying more precisely the com-
ponents important for good k-NN performance and leave
this investigation for future work.

C. Projection Head

Similarly to other self-supervised frameworks, using a
projection head [6] improves greatly the accuracy of our
method. The projection head starts with a n-layer multi-
layer perceptron (MLP). The hidden layers are 2048d and
are with gaussian error linear units (GELU) activations. The
last layer of the MLP is without GELU. Then we apply a
{5 normalization and a weight normalized fully connected
layer [9, 25] with K dimensions. This design is inspired
from the projection head with a “prototype layer” used in
SwAV [5]. We do not apply batch normalizations.

BN-free system. Unlike standard convnets, ViT architec-
tures do not use batch normalizations (BN) by default. There-
fore, when applying DINO to ViT we do not use any BN also
in the projection heads. In this table we evaluate the impact

ViT-S, 100 epochs heads w/o BN heads w/ BN

%-NN top-1 69.7 68.6

of adding BN in the heads. We observe that adding BN in
the projection heads has little impact, showing that BN is not
important in our framework. Overall, when applying DINO
to ViT, we do not use any BN anywhere, making the system
entirely BN-free. This is a great advantage of DINO + ViT to
work at state-of-the-art performance without requiring any
BN. Indeed, training with BN typically slows down trainings
considerably, especially when these BN modules need to be
synchronized across processes [16, 5, 4, 15].

w/ 12-bottleneck w/o 12-bottleneck

linear layer

12 normalization

T B x 256

n-layer MLP

projection head h
projection head h

n-layer MLP

Figure 1: Projection head design w/ or w/o 12-norm bottleneck.

L2-normalization bottleneck in projection head. We il-
lustrate the design of the projection head with or without 12-
normalization bottleneck in Fig. 1. We evaluate the accuracy

proj. head linear layers 1 2 3 4

w/ 12-norm bottleneck - 622 68.0 693
w/o 12-norm bottleneck 61.6 629 0.1 0.1

of DINO models trained with or without 12-normalization
bottleneck and we vary the number of linear layers in the
projection head. With 12 bottleneck, the total number of
linear layers is n + 1 (n from the MLP and 1 from the
weight normalized layer) while without bottleneck the to-
tal number of linear layers is n in the head. In this table,
we report ImageNet top-1 k-NN evaluation accuracy after
100 epochs pre-training with ViT-S/16. The output dimen-
sionality K is set to 4096 in this experiment. We observe
that DINO training fails without the 12-normalization bot-
tleneck when increasing the depth of the projection head.
L2-normalization bottleneck stabilizes the training of DINO
with deep projection head. We observe that increasing the
depth of the projection head improves accuracy. Our default
is to use a total of 4 linear layers: 3 are in the MLP and one
is after the 12 bottleneck.

Output dimension. In this table, we evaluate the effect
of varying the output dimensionality K. We observe that a

K 1024 4096 16384 65536 262144
k-NN top-1 67.8 693 69.2 69.7 69.1

large output dimensionality improves the performance. We
note that the use of 12-normalization bottleneck permits to
use a large output dimension with a moderate increase in the
total number of parameters. Our default is to use K equals
to 65536 and d = 256 for the bottleneck.

GELU activations. By default, the activations used in ViT
are gaussian error linear units (GELU). Therefore, for consis-

ViT-S, 100 epochs heads w/ GELU heads w/ ReLU
k-NN top-1 69.7 68.9

tency within the architecture, we choose to use GELU also
in the projection head. We evaluate the effect of using ReLU
instead of GELU in this table and observe that changing the
activation unit to ReL.U has relatively little impact.

D. Additional Ablations

We have detailed in the main paper that the combination
of centering and sharpening is important to avoid collapse in
DINO. We ablate the hyperparameters for these two opera-
tions in the following. We also study the impact of training
length and some design choices for the ViT networks.

Building different teachers from the student. In
Fig. 2(right), we compare different strategies to build the
teacher from previous instances of the student besides the
momentum teacher. First we consider using the student net-
work from a previous epoch as a teacher. This strategy has
been used in the memory bank of Wu ef al. [29] and as a
form of hard-distillation in Caron et al. [3] and Asano et
al. [1]. Second, we consider using the student network from
the previous iteration, as well as a copy of the student for the
teacher. In our setting, using a teacher based on a recent ver-
sion of the student does not converge. This setting requires
more normalizations to work. Interestingly, we observe that
using a teacher from the previous epoch does not collapse,
providing performance in the k-NN evaluation competitive
with existing frameworks such as MoCo-v2 or BYOL. While
using a momentum encoder clearly provides superior perfor-
mance to this naive teacher, this finding suggests that there
is a space to investigate alternatives for the teacher.

Analyzing the training dynamic. To further understand
the reasons why a momentum teacher works well in our
framework, we study its dynamic during the training of a
ViT in the left panel of Fig. 2. A key observation is that
this teacher constantly outperforms the student during the

72
— Teacher Top-1
®
8 68 Student copy 0.1
« Previous iter 0.1
= === Student .
> Previous epoch 66.6

Teacher
64 Momentum 72.8

0 100 200 300
epochs

Figure 2: Top-1 accuracy on ImageNet validation with k-NN classi-

fier. (left) Comparison between the performance of the momentum

teacher and the student during training. (right) Comparison be-

tween different types of teacher network. The momentum encoder
leads to the best performance but is not the only viable option.

=== sharpening == = centering both
= 6 gn 2
3 4 :
2 S
52 3
=0 ~ 0
0 epochs 100 0 epochs 100

Figure 3: Collapse study. (left): evolution of the teacher’s target
entropy along training epochs; (right): evolution of KL divergence
between teacher and student outputs.

training, and we observe the same behavior when training
with a ResNet-50 (Appendix D). This behavior has not been
observed by other frameworks also using momentum [16,

], nor when the teacher is built from the previous epoch.
We propose to interpret the momentum teacher in DINO
as a form of Polyak-Ruppert averaging [21, 23] with an
exponentially decay. Polyak-Ruppert averaging is often used
to simulate model ensembling to improve the performance
of a network at the end of the training [7]. Our method can
be interpreted as applying Polyak-Ruppert averaging during
the training to constantly build a model ensembling that has
superior performances. This model ensembling then guides
the training of the student network [27].

Avoiding collapse We study the complementarity role of
centering and target sharpening to avoid collapse. There are
two forms of collapse: regardless of the input, the model
output is uniform along all the dimensions or dominated by
one dimension. The centering avoids the collapse induced
by a dominant dimension, but encourages an uniform out-
put. Sharpening induces the opposite effect. We show this
complementarity by decomposing the cross-entropy H into
an entropy h and the Kullback-Leibler divergence (“KL”)
D KIL-

H(P;, Ps) = h(P;) + Dg,(P:| Ps). (1)

Table 7: Time and memory requirements. We show total running
time and peak memory per GPU (“mem.”) when running DeiT-S/16
DINO models on two 8-GPU machines. We report top-1 ImageNet
val acc with linear evaluation for several variants of multi-crop,
each having a different level of compute requirement.

100 epochs 300 epochs
multi-crop top-1 time top-1 time mem.
2 x 2242 67.8 153h 725 455h 9.3G

2%x224%2 + 2x962 71.5 17.0h
2x224%2 + 6x962 73.8 20.3h
2x2242 4+ 10%x96% 74.6 24.2h

74.5 51.0h 10.5G
75.9 60.9h 12.9G
76.1 72.6h 15.4G

A KL equal to zero indicates a constant output, and hence
a collapse. In Fig. 3, we plot the entropy and KL during
training with and without centering and sharpening. If one
operation is missing, the KL. converges to zero, indicating
a collapse. However, the entropy h converges to different
values: 0 with no centering and — log(1/K’) with no sharp-
ening, indicating that both operations induce different form
of collapse. Applying both operations balances these effects
(see study of the sharpening parameter 7; in Appendix D).

Compute requirements In Tab. 7, we detail the time and
GPU memory requirements when running DeiT-S/16 DINO
models on two 8-GPU machines. We report results with sev-
eral variants of multi-crop training, each having a different
level of compute requirement. We observe in Tab. 7 that
using multi-crop improves the accuracy / running-time trade-
off for DINO runs. For example, the performance is 72.5%
after 46 hours of training without multi-crop (i.e. 2 x 2242)
while DINO in 2 x 2242 + 10 x 962 crop setting reaches
74.6% in 24 hours only. This is an improvement of +2%
while requiring 2x less time, though the memory usage is
higher (15.4G versus 9.3G). We observe that the perfor-
mance boost brought with multi-crop cannot be caught up by
more training in the 2 x 2242 setting, which shows the value
of the “local-to-global” augmentation. Finally, the gain from
adding more views diminishes (+.2% form 6x to 10x 962
crops) for longer trainings.

Overall, training DINO with Vision Transformers
achieves 76.1 top-1 accuracy using two 8-GPU servers for 3
days. This result outperforms state-of-the-art self-supervised
systems based on convolutional networks of comparable
sizes with a significant reduction of computational require-
ments [15, 5]. Our code is available to train self-supervised
ViT on a limited number of GPUs.

Training with small batches In Tab. 8, we study the
impact of the batch size on the features obtained with
DINO. We also study the impact of the smooth parame-

Table 8: Effect of batch
sizes. Top-1 with k-NN
for models trained for 100
epochs without multi-crop.

bs 128 256 512 1024
top-1 579 59.1 59.6 599

ter m used in the centering update rule in Appendix D.
We scale the learning rate linearly with the batch size [14]:
Ir = 0.0005 * batchsize/256. Tab. 8 confirms that we can
train models to high performance with small batches. Results
with the smaller batch sizes (bs = 128) are slightly below
our default training setup of bs = 1024, and would certainly
require to re-tune hyperparameters like the momentum rates
for example. Note that the experiment with batch size of 128
runs on only 1 GPU. We have explored training a model with
a batch size of 8, reaching 35.2% after 50 epochs, showing
the potential for training large models that barely fit an image
per GPU.

Online centering. We study the impact of the smoothing
parameters in the update rule for the center c used in the
output of the teacher network. The convergence is robust

m 0 09 099 0.999
kE-NNtop-1 69.1 69.7 694 0.1

to a wide range of smoothing, and the model only collapses
when the update is too slow, i.e., m = 0.999.

Sharpening. We enforce sharp targets by tuning the
teacher softmax temperature parameter 7. In this table,
we observe that a temperature lower than 0.06 is required to
avoid collapse. When the temperature is higher than 0.06,

T 0 0.02 0.04 0.06 0.08 0.04— 0.07
k-NN top-1 43.9 66.7 69.6 68.7 0.1 69.7

the training loss consistently converges to in(K). However,
we have observed that using higher temperature than 0.06
does not collapse if we start the training from a smaller value
and increase it during the first epochs. In practice, we use
a linear warm-up for 7, from 0.04 to 0.07 during the first
30 epochs of training. Finally, note that 7 — 0 (extreme
sharpening) correspond to the argmax operation and leads
to one-hot hard distributions.

Longer training. We observe in this table that longer train-
ing improves the performance of DINO applied to ViT-Small.
This observation is consistent with self-supervised results

DINO ViT-S 100-ep 300-ep 800-ep
k-NN top-1 70.9 72.8 74.5

obtained with convolutional architectures [6]. We note that
in our experiments with BYOL on ViT-S, training longer

than 300 epochs has been leading to worse performance com-
pare our 300 epochs run. For this reason we report BYOL
for 300 epochs in the main paper while SWAV, MoCo-v2
and DINO are trained for 800 epochs.

Self-attention maps from supervised versus self-
supervised learning. We evaluate the masks obtained
by thresholding the self-attention maps to keep 80% of
the mass. We compare the Jaccard similarity between the

ViT-S/16 weights

Random weights 22.0
Supervised 27.3
DINO 459
DINO w/o multicrop 45.1
MoCo-v2 46.3
BYOL 47.8
SwAV 46.8

ground truth and these masks on the validation images of
PASCAL VOCI12 dataset for different ViT-S trained with
different frameworks. The properties that self-attention
maps from ViT explicitly contain the scene layout and, in
particular, object boundaries is observed across different
self-supervised methods.

Impact of the number of heads in ViT-S. We study the
impact of the number of heads in ViT-S on the accuracy and
throughput (images processed per second at inference time
on a singe V100 GPU). We find that increasing the number

#heads dim dim/head # params im/sec k-NN
6 384 64 21 1007 72.8
8 384 48 21 971 73.1
12 384 32 21 927 73.7
16 384 24 21 860 73.8

of heads improves the performance, at the cost of a slighlty
worse throughput. In our paper, all experiments are run with
the default model presented in [28], i.e. with 6 heads only.

E. Multi-crop

In this Appendix, we study a core component of DINO:
multi-crop training [5].

Range of scales in multi-crop. For generating the dif-
ferent views, we use the RandomResizedCrop method
from torchvision.transforms module in PyTorch.
We sample two global views with scale range (s, 1) before

(0.05, 5), (s, 1),s: 0.08 0.16 024 032 048
k-NN top-1 65.6 68.0 69.7 69.8 69.5

resizing them to 2242 and 6 local views with scale sampled

in the range (0.05, s) resized to 962 pixels. Note that we
arbitrarily choose to have non-overlapping scaling range for
the global and local views following the original design of
SwAV. However, the ranges could definitely be overlapping
and experimenting with finer hyperparameters search could
lead to a more optimal setting. In this table, we vary the pa-
rameter s that controls the range of scales used in multi-crop
and find the optimum to be around 0.3 in our experiments.
We note that this is higher than the parameter used in SWAV
which is of 0.14.

Multi-crop in different self-supervised frameworks.
We compare different recent self-supervised learning frame-
works, namely MoCo-v2 [8], BYOL [15] and SWAV [5] with
ViT-S/16 architecture. For fair comparisons, all models are

crops 2 x 2242 2 x 2242 4+ 6 x 962
eval k-NN linear k-NN linear
BYOL 66.6 71.4 59.8 64.8
SwWAV 60.5 68.5 64.7 71.8
MoCo-v2 62.0 71.6 65.4 73.4
DINO 67.9 72.5 72.7 75.9

pretrained either with two 2242 crops or with multi-crop [5]
training, i.e. two 2242 crops and six 962 crops for each
image. We report k-NN and linear probing evaluations af-
ter 300 epochs of training. Multi-crop does not benefit all
frameworks equally, which has been ignored in benchmarks
considering only the two crops setting [9]. The effectiveness
of multi-crop depends on the considered framework, which
positions multi-crop as a core component of a model and not
a simple “add-ons” that will boost any framework the same
way. Without multi-crop, DINO has better accuracy than
other frameworks, though by a moderate margin (1%). Re-
markably, DINO benefits the most from multi-crop training
(+3.4% in linear eval). Interestingly, we also observe that
the ranking of the frameworks depends on the evaluation
protocol considered.

Training BYOL with multi-crop. When applying multi-
crop to BYOL with ViT-S, we observe the transfer perfor-
mance is higher than the baseline without multi-crop for
the first training epochs. However, the transfer performance

_ 65
260

=

=55

Z 0 / — /0 MC
o w/ mc
45

0 100 200 300
epochs

growth rate is slowing down and declines after a certain

amount of training. We have performed learning rate, weight
decay, multi-crop parameters sweeps for this setting and
systematically observe the same pattern. More precisely, we
experiment with {1e75, 3¢, le ™%, 3e™4, 1e~3, 33} for
learning rate base values, with {0.02, 0.05, 0.1} for weight
decay and with different number of small crops: {2, 4, 6}.
All our runs are performed with synchronized batch normal-
izations in the heads. When using a low learning rate, we
did not observe the performance break point, i.e. the trans-
fer performance was improving continually during training,
but the overall accuracy was low. We have tried a run with
multi-crop training on ResNet-50 where we also observe
the same behavior. Since integrating multi-crop training to
BYOL is not the focus of this study we did not push that
direction further. However, we believe this is worth investi-
gating why multi-crop does not combine well with BYOL in
our experiments and leave this for future work.

F. Evaluation Protocols

F.1 k-NN classification

Following the setting of Wu et al. [29], we evaluate the qual-
ity of features with a simple weighted k Nearest Neighbor
classifier. We freeze the pretrained model to compute and
store the features of the training data of the downstream task.
To classify a test image z, we compute its representation
and compare it against all stored training features 7'. The
representation of an image is given by the output [CLS]

token: it has dimensionality d = 384 for ViT-S and d = 768
for ViT-B. The top k NN (denoted N},) are used to make a
prediction via weighted voting. Specifically, the class ¢ gets
a total weight of Zie N a;1c,—c, where ¢; is a contribution
weight. We use «; = exp(T;2/7) with 7 equals to 0.07 as
in [29] which we do not tune. We evaluate different values
for k and find that k£ = 20 is consistently leading to the best
accuracy across our runs. This evaluation protocol does not
require hyperparameter tuning, nor data augmentation and
can be run with only one pass over the downstream dataset.

F.2 Linear classification

Following common practice in self-supervised learning, we
evaluate the representation quality with a linear classifier.
The projection head is removed, and we train a supervised
linear classifier on top of frozen features. This linear clas-
sifier is trained with SGD and a batch size of 1024 during
100 epochs on ImageNet. We do not apply weight decay.
For each model, we sweep the learning rate value. Dur-
ing training, we apply only random resizes crops (with de-
fault parameters from PyTorch RandomResizedCrop)
and horizontal flips as data augmentation. We report central-
crop top-1 accuracy. When evaluating convnets, the common
practice is to perform global average pooling on the final

feature map before the linear classifier. In the following, we
describe how we adapt this design when evaluating ViTs.

ViT-S representations for linear eval. Following the
feature-based evaluations in BERT [11], we concatenate
the [CLS] tokens from the [last layers. We experiment

concatenate [last layers 1 2 4 6
representation dim 384 768 1536 2304
ViT-S/16 linear eval 76.1 76,6 770 770

with the concatenation of a different number [of layers and
similarly to [1 1] we find [= 4 to be optimal.

ViT-B representations for linear eval. With ViT-B we
did not find that concatenating the representations from the
last [layers to provide any performance gain, and consider
the final layer only (I = 1). In this setting, we adapt the

pooling strategy [CLS] tok. concatenate [CLS] tok.

only and avgpooled patch tok.
representation dim 768 1536
ViT-B/16 linear eval 78.0 78.2

pipeline used in convnets with global average pooling on the
output patch tokens. We concatenate these pooled features
to the final [CLS] output token.

G. Self-Attention Visualizations

We provide more self-attention visualizations in Fig. 4.
The images are randomly selected from COCO validation
set, and are not used during training of DINO.

H. Class Representation

As a final visualization, we propose to look at the distribu-
tion of ImageNet concepts in the feature space from DINO.
We represent each ImageNet class with the average feature
vector for its validation images. We reduce the dimension
of these features to 30 with PCA, and run t-SNE with a per-
plexity of 20, a learning rate of 200 for 5000 iterations. We
present the resulting class embeddings in Fig. 5. Our model
recovers structures between classes: similar animal species
are grouped together, forming coherent clusters of birds (top)
or dogs, and especially terriers (far right).

Supervised Supervised

Figure 4: Self-attention heads from the last layer. We look at the attention map when using the [CLS] token as a query for the different
heads in the last layer. Note that the [CLS] token is not attached to any label or supervision.

chickadee goldfinch
e

sul

brambling
indigo bunting
ous

great grey owl

er snake
wmuer kmg snake

side
— Lﬁ%. Tingneck snake
orned viper-
F%ﬁdm —obra thunder snake

boa constrictf

ater snaigecen green snake
Vine snake
green lizard
European fire salamander alligator lizard wmp American chameleon
spotied saa ree frog
common newt: . ameleo
bandec Common iguana

i ’w G
o emado cragon

roirican crocodile
errapi® " §=—Gila monster
tiger beetle Srmadillo
weevil black and gold garden spider
Ry el g R
o

arclot
ok vﬂms igor _ leatherback g ench
grasshupuer oy Vol spider " 1o m/‘wus g boracouta
i [# Tagntte upeae“"g et o snakey urgeo
camopig peete i gy lobster usong. ngersnark grealwhl(eshark
walking sti cal rﬁ (5 ctric.
! er v ot Mﬁw&ﬁ*
agonfl pion,
fiy Dee fggier cratrgasfish hopallelHs ” e
Oungeness crbr g ity » = MQA‘M“ en

ere
gl

American alligator.
boX T

i
Iycaeni arch eannstzl ®
B gy L
sulphor butrty 0 deisy ;mm rofthe-w
yellow ladys slipper " agic eapple
custard apple-e &= %lb
. b *nmzm}" i
surawberry_ogom ear
bell pepy L

e
Granny Smith deBasayash
spaghetti sqUash’

bu!lemul squash

cheeseburger. :b"agu‘sﬁ aistreg

m =~ rotisserie

carbonara— % 8ca

mitten
meat loaf-_ s dor8 g ge cream butcher shop oF
e b
Pizzgy lwmg\ed psm?;'a'e sau .—gm(ery store handkerchiel | e
pot %,6 L

staurang
Soup. bak Christmas stocking

s
‘consomme’ trifly 8, Jrving pan
5 W8 cn oven bath towel =

Crock Pot—8 eeping bag

caldrdnpotters wheel

550
‘mixing bowl nematode,

re: N
i Pegg#{a{ Ny bap_ strainer spmme gﬁk

measuring cuj %isgy an} kBt

o ekri digh/” mara ba

beake] Iskey g i
e g e imp’?iﬂ‘% erorer-e Igl/e.a ottl *M‘ﬂ st RS o,
shaker ."‘,hﬁ" “ﬁé wperen s““{".“ %ﬂ“
5 spatuly g
i ﬂ:‘"‘ by padlo:E

st
g engy
black grou

ru skirt
on
p'(ke'"z"tbe balance beam 0¥ v
””"’evml. }bﬁn olleyb ping-pong ball

- allplayer
r:fscor ogg mus‘meunz. o Sy L
foe(bal\ helmet_‘ﬁ J/““e' bag”o\l ball

all

ul\e(

y boot
PR nﬂ
uﬂ—

ket
Mncan arey

vuddy turnstone
red-backed sandpiper

red-breasted merganser

%
T T o rake

vater ouzel BT o ingo
" rtri }h iFAN egret
Sicer impin PR
grouse /hite stork

orangutan

boon

b
macaque_ iy

proboscis monkey— &
squirrel monkey —_guengg!

chimpanzee
amang
L

ey
Fowler monkey

three 023 Sioth. in
s cotnus
Lpda
loth bear
Amerca =
ae&aﬁﬁﬁs
rsku,‘k Blown bear g affenpinscher niature schnauzer
[38ooted ferre gjent schnauzer cotch terrie jorwich terrier
Bouvier des Flandrés
mungnose auinea pio cmy coated retriever ea) Standard schnauzer
Lkl A Kerr n terrier
e Ang0r Silky terrier
E;S %, Psriliis Rteunds Hpreotk Teri
wood rabtit g ersian cat ige e = Tibetan terrier
hareg Arctic fo Ceonberg g Sussex Spanl%comﬂ, 87ga Shin-Tzu
sea lign " keeshond - gy e
“ngmar;ms s wnill o e Englis T Maltese dog
tnceraton g o3 imber ol s L i teerterricr
g 285wl Pometirences PRGNSl PoplElaure poodte odle
i
Afican elephant, tuske? blsmf’a'“ T > N springer spaniel 0 P
Indan T i

ebra
water buffdlo .h?},.an camd?d!
gg,g‘/ﬁ\p‘gazeue
impala

orcag?
horse cait hartebeest

Staffordshire bullterrier-

hna Plass\ere
e e e

on-ig fab coat
G?baﬁ— ab coaf athing cap

maillot

oboe
maidt® Sswimming trunks
ammgown 7 sl
We‘ fone parallel bars
orizontal bar

Sragd"
reaStpiale gmr(?v) (roquel
ski

e(\ar\d sheepdog.
Legs? e ot B el
s
oea an shepher %panesespa 1 rittany spaniel
,

nglish springer

%80} nese mountain dog
!ogs\ed ?agwﬂo Appenzeller

und
English 'oxhounﬂ g <
ém - EntleBucher
soner " sy M cater Suiss Mountain dog
Chinuanis e—ta bt}
Boston B! F",;g,; ol German short-haired pointer

GheRigscher
Brabancon griffon X
[Ty black-and-tan coonhound
bor terrier
bull mastiff — Labrador retriever
Chesapeake Bay retriever
Rhodesian ridg@back weimaraner

hnis ball

("‘m‘& ungua un-cyc
[iﬁ‘ ungery i, ntain bIke. snowmobile
oc Rt plunger stretcher B‘Y e.g%u mJ two

a
op bottle—W hing bag i
S0 e bottle thimi e a
——e le ourglass | tal
Moot &20iarbotic 9555 rumsil ol Sl moBr (ha,nsawﬁw /‘i B
rerume R W&s&@f’sm”‘sg‘awﬂ—if, Bocrons mt .a:k& W.,,u i roro S
hair spray holster. en
‘seabbal e hal
}‘Mopener"h.ﬁ“ S ™ Shopoingbasket _opaly pmw cannon orey whale
orkscren &, Side e %, o "o Qumodmil Aromontory s
revolve vt i o ® e ("ecwlqgwe|\‘n valley * candvar %00
rain barrel e
ashcan
ig<rige g . am“é"e'n'?ne"‘e = '“° S ‘ Ereakwa;er
assin picket' lence e
gond mmgm rsge e eRain digenhbuse—_go~ trimaran
analog clock wall clock " i
° barorm & electric fap Q\ (sﬂ paper to e‘ R grand plano? (hxlnlmk lE Sg ‘PQM"“USE ' Dr" e
odometer il filter disk bral és W P edow screen Bﬁ%mgs bm feboat *Pecdboat
Sy ST e o iyt g ad " o o e solr i qmmm e
e e BB R Sapnter st eescak Fﬂc ole SO ".“m'é DEhier 7o S
Sigital wmhde I elegp 91 fing <& ng annister msnhole mvepr:d e:t?u mﬁm % hig?”
E &fﬁ%@ R
oot kesboard ™" camers UG wih L o gm"me momate ﬁ%m pRERChUtS missicS ”'I*w""f
puter keyboard S, el M@(el deor P throne) e space shuttle
e mode: e, P, orarg Barberant Bale P oo mosaue S bulet train
remote control_hard disch - .mm ST oo o ’%— 5 organ - dome
hand-held comuuler% 1 "G "o Shoe (5% S ihan siurebuar triumphal arch
cellular telephone ! traffic light
(on'e((lone cinemd@—!
e A A I e
ox
oscilloscope safe pay-phone- % g meter hamsm* W"’"“
-ash machiné steam locomotive’ Model T
Bifcart

electric locomotive.

orkdift 8,
freight car. 5"3WD'°"§ Tacg__car mirror
rgler truck jeey o wheel

enger cag« 8. 4
mobile hdme Garbase, iuGKRA 9 o 3, 13

stre
recreational vehicle

school b b
o AT Convertble

ambulance

Figure 5: t-SNE visualization of ImageNet classes as represented using DINO. For each class, we obtain the embedding by taking the
average feature for all images of that class in the validation set.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

Yuki Markus Asano, Christian Rupprecht, and Andrea
Vedaldi. Self-labelling via simultaneous clustering and repre-
sentation learning. In /CLR, 2020. 4

Mahmoud Assran, Nicolas Ballas, Lluis Castrejon, and
Michael Rabbat. Recovering petaflops in contrastive semi-
supervised learning of visual representations. preprint
arXiv:2006.10803, 2020. 2

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning of
visual features. In ECCV, 2018. 4

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Ar-
mand Joulin. Unsupervised pre-training of image features on
non-curated data. In ICCV, 2019. 4

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurlPS, 2020. 2, 3,4,5,6,7

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. preprint arXiv:2002.05709, 2020. 3, 6
Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 2
Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
preprint arXiv:2003.04297, 2020. 2, 3,7

Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. preprint arXiv:2011.10566, 2020. 2,
3,7

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. In NeurIPS, 2013. 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. preprint arXiv:1810.04805,
2018. 8

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. preprint arXiv:2010.11929,
2020. 1

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. 1JCV, 2010. 1

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. preprint arXiv:1706.02677,
2017. 6

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning. In NeurIPS, 2020. 2, 3,
4,5,7

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, 2020. 4, 5

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. On using very large target vocabulary for
neural machine translation. preprint arXiv:1412.2007, 2014.
5

Julien Mairal. Cyanure: An open-source toolbox for empirical
risk minimization for python, c++, and soon more. preprint
arXiv:1912.08165, 2019. 1, 2

Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, 2008. 1

Hieu Pham, Qizhe Xie, Zihang Dai, and Quoc V Le. Meta
pseudo labels. preprint arXiv:2003.10580, 2020. 2

Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838-855, 1992. 5

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-
ing He, and Piotr Dollar. Designing network design spaces.
In CVPR, 2020. 1

David Ruppert. Efficient estimations from a slowly conver-
gent robbins-monro process. Technical report, 1988. 5

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li
Fei-Fei. Imagenet large scale visual recognition challenge.
1JCv, 2015. 1

Tim Salimans and Diederik P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. NeurIPS, 2016. 3

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. In NeurlPS, 2020.
2

Antti Tarvainen and Harri Valpola. Mean teachers are
better role models: Weight-averaged consistency targets
improve semi-supervised deep learning results. preprint
arXiv:1703.01780, 2017. 5

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. preprint arXiv:2012.12877,2020. 1, 6

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 4,7

Qizhe Xie, Zihang Dai Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. Unsupervised data augmentation for
consistency training. preprint arXiv:1904.12848, 2020. 2
Haohang Xu, Xiaopeng Zhang, Hao Li, Lingxi Xie, Hongkai
Xiong, and Qi Tian. Seed the views: Hierarchical seman-
tic alignment for contrastive representation learning. arXiv
preprint arXiv:2012.02733, 2021. 3

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. Learning deep features for scene
recognition using places database. In NeurIPS, 2014. 1

