
Appendix

A. Maximized Entropy via the chosen Out-
Distribution Loss Function

In section 3.1 we state that by our choice of out-
distribution loss function we maximize the softmax entropy.
As a reminder, the softmax entropy is defined as

E(f(x)) := −
∑
j∈C

fj(x) log(fj(x)) (9)

and the out-distribution loss function as

ℓout(f(x)) := −
∑
j∈C

1

|C| log(fj(x)) , (10)

where C denotes the the set of trained classes and f(x) ∈
(0, 1)|C| the softmax probability vector. Then, minimizing
ℓout(f(x)) is equivalent to maximizing the softmax entropy
E(f(x)). This statement can be proven straightforwardly
using Jensen’s inequality. Since the softmax definition im-
plies fj(x) ∈ (0, 1) ∀j ∈ C and

∑
j∈C fj(x) = 1, Jensen’s

inequality applied to the convex function − log(·) yields

ℓout(f(x)) ≥ − log

∑
j∈C

1

|C|fj(x)

 = log(|C|) (11)

and applied to the concave function log(·)

E(f(x)) ≤ log

∑
j∈C

fj(x)
1

fj(x)

 = log(|C|) (12)

with equality if fj(x) = 1
|C| ∀j ∈ C.

B. Separability by means of Data Distribution
The violin plots in figure 4 visualize the separability

of in-distribution and out-distribution pixels (binary clas-
sification) in LostAndFound and Fishyscapes, respectively.
These plots summarize different statistics such as median
and interquartile ranges and also show the full distribution
of the data. The density corresponds to the relative pixel
frequency at a given entropy value of the considered class.
In the following, we refer to the shape of the violin plots as
distribution.

First, we focus on evaluating LostAndFound OoD ob-
jects, see figure 4 (a). For the baseline model we observe
that a large mass of data corresponding to the negative class
is located at very low entropy values (median 0.02), i.e.,
most road pixels are classified with high confidence. More-
over, the 75th percentile is located at an entropy value of
0.04 and the sample of highest value at 0.57. Regarding the
pixels of the positive class, we see that the distribution is

rather dispersed. The median is at 0.29 and the interquar-
tiles range from 0.13 to 0.44. We conclude that, on average,
positive samples have higher entropy values than negative
ones, i.e., pixels of an OoD object are classified with higher
uncertainty than for road pixels. However, for perfect per-
formance one seeks a threshold such that both distributions
(of the positive and negative class) are separated. This is not
the case for the baseline model since a substantial amount of
samples still has very low entropy, e.g. the 10th percentile
of the positive samples is at 0.04, which is also the median
of negative samples.

After OoD training, the distribution of negative samples
remains in large parts similar compared to the baseline only
with little changes. Noteworthy, the median and upper quar-
tile decrease down to entropy values of 0.1 and 0.2, respec-
tively. The distribution’s maximum is at 0.66. On the con-
trary, the changes of the distribution for the positive sam-
ples are significant as a large mass is concentrated at very
high entropy values. The median is located at 0.59 which is
roughly at the same magnitude as the maximum for negative
samples. Moreover, the minimum value for positive pixels
is at 0.01 which equals the median for negative samples. In
particular the latter underlines the significant improvement
of separability due to our OoD training. We observe the
same behavior for Fishyscapes OoD objects but even more
pronounced, see figure 4 (b). After the OoD training, the
medians of the two classes, 0.01 for negative samples and
0.87 for positive samples, differ by 86 percent points. Be-
sides, the lower quartile of positive samples at an entropy
value of 0.71 as well as the 1st percentile at 0.03 are still
above the median of negative samples. Consequently, we
conclude that our OoD training is beneficial for identifying
OoD pixels.

C. Segment-wise Metrics for Meta Classifiers

As outlined in section 4, we train meta classifiers based
on hand-crafted metrics. These metrics are derived from
the softmax probabilities f(x) ∈ (0, 1)|Z|×|C|, x ∈ X of
deep convolutional neural networks, information we get in
every forward pass. As a reminder, let Ẑout(x) be the set
of pixel locations in image x ∈ X that are predicted to be
OoD, see section 5. A connected component k ∈ K̂(x) ⊆
P(Ẑout(x)) represents an OoD segment / object prediction
due to the entropy being above the given threshold. This
is different to other works dealing with segment-wise meta
classification [9, 34, 44, 45] as they consider connected
components sharing the same class label as segments.

We estimate uncertainty per OoD segment k by averag-
ing pixel-wise scores at the segment’s pixel locations z ∈ k.
In addition to the plain softmax probabilities fz(x), we also
incorporate three pixel-wise dispersion measures, namely



∀z ∈ k the (normalized) entropy

Ē(fz(x)) = − 1

|C|
∑
j∈C

fz
j (x) log(f

z
j (x)) , (13)

the variation ratio

V (fz(x)) = 1− fz
ĉ(z)(x) , (14)

and the probability margin

M(fz(x)) = V (fz(x)) + max
j∈C\{ĉ(z)}

fz
j (x) (15)

with ĉ(z) := argmaxj∈C fz
j (x) being the class label ac-

cording to the maximum a posteriori principle.
The segment’s size S(k) = |k| is not only needed for

averaging but also serves as meta classification input on its
own. Moreover, let kin ⊂ k be the set of pixel locations
in the interior of the segment k, i.e., kin = {(h,w) ∈ k :
[h±1]× [w±1] ∈ k}. This also gives us the pixel locations
of the boundary kbd = k \kin. In order to capture geometry
features of a segment, we consider the relative sizes

S̃ = S/Sbd and S̃in = Sin/Sbd (16)

by treating the segment’s boundary and interior separately.
For all metrics outlined up to now, we additionally con-

sider the variances of the pixel-wise scores. They measure
the deviation from the segment score mean and in our ex-
periments, and it turns out that they have a great impact on
meta classifiers for OoD detection.

Let knb = {z′ ∈ [h ± 1] × [w ± 1] ⊂ |H| × |W| :
(h,w) ∈ k, z′ /∈ k},Z = H ×W be the neighborhood of
k. As metric if one segment is misplaced we include

N(j|k) = 1

|knb|
∑

z∈knb

1{j=ĉ(z)} ∀ j ∈ C (17)

which is the proportion of neighborhood pixels, with class
j ∈ C having the highest softmax score, to neighborhood
size. Another metric for localization purposes is the seg-
ment’s geometric center

Ch(k) =
1

S

S∑
i=1

hi and Cw(k) =
1

S

S∑
i=1

wi (18)

with zi = (hi, wi) ∈ k ∀ i = 1, . . . , |k|, i.e., averaging over
the segment’s pixel coordinates in vertical and horizontal
direction.

For each segment k we then have m = 83 metrics in total
(as |C| = 19 in our experiments). This forms a structured
dataset

µ ⊆ R|∪x∈X K̂(x)|×m = R|∪x∈X K̂(x)|×83 (19)
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Figure 10: Separability between in-distribution and out-
distribution pixels in Cityscapes. Pixels labeled as train
class according to the ground truth are considered as in-
distribution, pixels labeled with the void class as out-of-
distribution. For the results with Cityscapes void OoD train-
ing the baseline model (left) was retrained with entropy
maximization on the Cityscapes void class (right), i.e., us-
ing Cityscapes unlabeled objects as OoD proxy for Dout.
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Figure 11: Separability between in-distribution and out-of-
distribution pixels in the OoD dataset LostAndFound. For
the results with Cityscapes void OoD training the baseline
model (left) was retrained with entropy maximization on the
Cityscapes void class (right).

serving as input for the meta classification model g : µ →
[0, 1], the latter being a simple logistic regression in our
case. By means of this linear model, we learn to dis-
criminate whether a segment k has an intersection with the
ground truth (while all inputs are independent of the ground
truth segmentation), see also equation (7).

D. OoD Training with Cityscapes void Class
Before using the COCO dataset as OoD proxy, we con-

ducted some experiments with the Cityscapes void class as
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Figure 12: Comparison between baseline model and retrained model, with entropy maximization on Cityscapes unlabeled
objects, for one Cityscapes and one LostAndFound scene. The first and third column displays the segmentations obtained
by the respective models on either a Cityscapes or LostAndFound input image, the second and forth column displays the
corresponding entropy heatmaps. In the entropy heatmaps, the OoD objects are marked with yellow lines.

OoD proxy for Dout in order to perform entropy maximiza-
tion. This class includes objects that cannot be assigned to
any of the Cityscapes training classes, therefore they remain
unlabeled and are ignored during training. We refer to this
retraining approach using the Cityscapes unlabeled objects
as OoD proxy as void OoD training. We find the best results
in our experiments for the DeepLabv3+ as baseline model
after 8 epochs of void OoD training and out-distribution loss
weight of λ = 0.05. With respect to the Cityscapes valida-
tion dataset, the retrained model clearly improves at identi-
fying unseen unlabeled objects, see figure 10.

However, the same retrained model fails to generalize to
unseen OoD objects available in the LostAndFound dataset,
see figure 11. Not only the softmax entropy of OoD pixels is
boosted but also the entropy of a significant amount of in-
distribution pixels. This is even more considerable due to
the strong class imbalance in LostAndFound. With respect
to the AUROC, the void OoD training decreases the OoD
detection score by 5 percent points down to 0.88, while de-
creasing the more relevant metric AUPRC by even 29 per-
cent points down to 0.17 compared to the baseline model.

A visual comparison of the effects of void OoD training
is shown is figure 12. The retraining does not noticeably im-
pact the segmentation performance, neither for Cityscapes
nor LostAndFound. In particular for the segmentation of
the Cityscapes scenes, there are only minor differences vis-
ible, i.e., the difference in performance for the original task
is marginal. This is in line with the observation that retrain-
ing with the multi-criteria loss function, see equation equa-
tion (2), and the COCO dataset as OoD proxy leads only to a
marginal loss of mIoU for the Cityscapes validation dataset.
With respect to the Cityscapes images, the softmax entropy
inside unlabeled objects is clearly boosted due to void OoD

training. This makes identifying such objects easier in com-
parison to the baseline model.

Regarding the LostAndFound the differences in segmen-
tations are more visible although still not being significant.
On the contrary, by comparing the entropy heatmaps for
the baseline model and the model after void OoD training,
one observes that not only the entropy of pixels inside the
OoD objects is boosted but also many in-distribution pixels.
This detrimentally impacts the discrimination performance
between in-distribution and out-distribution pixels as these
two classes cannot be separated well via entropy threshold-
ing. This supports the impression of the pixel-wise evalua-
tion that void OoD training is not suitable for the detection
of objects other than the Cityscapes unlabeled objects.

E. OoD Training for DualGCNNet

As a second model complementary to the DeepLabv3+
model, we conducted same experiments of OoD training,
i.e., retraining with the COCO dataset as OoD proxy, with
the DualGCNNet which is a weaker and more lightweight
network compared to the state-of-the-art DeepLabv3+ seg-
mentation network. We find the best results after 11 epochs
of OoD training with out-distribution loss weight of λ =
0.25. As optimizer we used Adam with a learning rate of
10−6.

We evaluated the OoD detection for the LostAndFound
test and Fishyscapes Validation dataset in a similar man-
ner as in the experiments for DeepLabv3+. For the Dual-
GCNNet model, however, we only compare OoD training
against entropy thresholding with the original model. En-
tropy thresholding with DualGCNNet in its original version
is a weak OoD detector with AUPRC-scores of 0.36 and
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Figure 13: Relative pixel frequencies of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, at different entropy
values for the baseline model, i.e., before OoD training (a & b left), and after OoD training (a & b right). The red lines
indicate the thresholds of highest accuracy.

Before OoD Training After OoD training

Figure 14: Comparison of softmax entropy heatmaps before (left) and after OoD training (right). The yellow lines mark the
OoD objects according to their ground truth annotation.

0.07 for LostAndFound and Fishyscapes, respectively, see
table 1. We observe that OoD training is not as effective
as for the DeepLabv3+ model in terms of absolute perfor-
mance gain. However, we still observe a decent improve-
ment in separability. By applying OoD training, the AU-
ROC increases by 3 percent points for LostAndFound and
even 9 percent points for Fishyscapes up to a score of 0.94
for both datasets. With respect to the PR curves, the AUC
improves by 15 percent points up to 0.51 for LostAndFound
and by 20 percent points up to 0.38 for Fishyscapes. Note-
worthy, these AUC scores after OoD training are higher
than for the plain DeepLabv3+ (baseline) model which is
already a strong OoD detection model.

These results for the weaker DualGCNNet model further
demonstrate the positive effect on the OoD detection ability
when performing OoD training with the COCO dataset as
OoD proxy. The pixel-wise evaluation results are reported
by means of the violin plots in figure 13 and by ROC as well
as PR curves in figure 15.

F. OoD Training Visualization
The improved separation ability due to OoD training is

not only achieved by increasing the softmax entropy of OoD
pixels but also by decreasing the softmax entropy for in-
distribution pixels. This can be also observed by means
of the in-distribution violins, for instance in figure 13. By
comparing the shapes of the violins corresponding to the
DualGCNNet plain model and the model after OoD train-
ing, we notice that the violin shapes remain similar in large
parts. The median and the upper quartile, however, de-
crease down to lower entropy values after OoD training.
This indicates that after entropy maximization the model
is on the one hand more uncertain at OoD pixel locations
and on the other hand more certain about its prediction at
in-distribution pixel locations. The same observation also
holds for the DeepLabv3+ model, see figure 4. This is in
line with the observation made in [49] that training with an
OoD proxy may have a regularizing effect.

An illustration is provided in figure 14. For compari-
son purposes, we refer to the entropy heatmaps provided
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Figure 15: Detection ability of LostAndFound (a) and Fishyscapes (b) OoD pixels, respectively, evaluated by means of
receiver operating characteristic curve (a & b left) and precision recall curve (a & b right). The red lines indicate the
performance according to random guessing.

in figure 12 as both figures show the same scene. The
visualization of heatmaps clearly shows that due to OoD
training pixels with high entropy are more concentrated in-
side OoD objects. Moreover, the in-distribution objects, es-
pecially the pixels corresponding to the road, have lower
entropy values than before OoD training. This makes the
road seem cleaner with respect to the possible occurrence of
OoD objects. After entropy maximization the OoD objects
are (visibly) better recognizable within the softmax entropy
heatmaps. Therefore, we expect that the meta classification
performance is improved as the meta classifiers are able to
estimate the shape of OoD objects even better. Moreover,
higher entropy values are stronger correlated with the pres-
ence of OoD objects.

G. Found Objects due to OoD Training
The objects in the LostAndFound dataset comprises four

road harzard classes:

• humans: kids (with toys) on the road

• standard object: crates in different shapes and colors

• emotional hazards: bobby car, ball, dog, etc.

• random hazards: bumper, euro pallet, pylon, tire etc.

Figure 16 illustrates the found objects via softmax entropy
thresholding with the baseline model and also the model
after OoD Training. One clearly notices that the number
of overlooked OoD objects from all classes is significantly
reduced due to OoD training.

H. Course of OoD Training
In order to monitor that the baseline model does not un-

learn its original task due to OoD training, we evaluate the
model’s original task performance over the training epochs.

Figure 16: Overview of detected LostAndFound objects
(per object class) with t = 0.7 before (green) and after OoD
Training (orange). The blue bar indicates the number of
ground truth instances that can be found in total.

We evaluate the mIoU on the Cityscapes validation dataset
against the AUPRC on the LostAndFound test dataset,
displayed in figure 17. The state-of-the-art DeepLabv3+
model, which serves as baseline throughout our experi-
ments, achieves an mIoU of 90.30% when equipped only
with the standard maximum a posteriori (MAP) decision
principle while the same model has an entropy based OoD
detection performance of 46.01% in AUPRC. By fine tun-
ing the neural network with entropy maximization on OoD
inputs, we on the one hand sacrifice only little in mIoU (of
the original task). On the other hand, we observe improved
AUPRC scores over the course of training epochs peaking at
76.45%. This considerable gain at detecting OoD samples
in LostAndFound comes with a marginal loss in Cityscapes
validation mIoU of less than 1 percent point. Moreover, the
course of the OoD training illustrates convergence around
the best AUPRC score with an mIoU loss that is in the same
range as for the best score after OoD training. Concerning
the overall performance of perception systems that rely on
semantic segmentation, e.g., in applications like automated
driving, this is a favorable trade-off in terms of safety that
comes with very little computational overhead.
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Figure 17: Mean intersection over union (mIoU) for the
Cityscapes validation dataset split over the course of OoD
training.

I. Meta Classification Visualization

The logistic regressions as meta classifiers have proven
their efficiency in identifying and afterwards removing false
positive (FP) / incorrect OoD object predictions. In this sec-
tion we intend to show further examples for the FP OoD
removal and thus show the final output of our two-step pro-
cedure for OoD detection.

For the plain model the meta classifiers are already able
to remove FP OoD predictions reliably, see figure 18 top
row. However, some false positive OoD predictions still re-
main. As pixels with high entropy are more concentrated in-
side OoD objects after the entropy maximization of the OoD
training, the combination of OoD training and meta classi-
fication yields the best result in terms of the number of FP
OoD predictions, see figure 18 bottom row. The examples
in figure 19 further illustrate that the improved OoD detec-
tion performance after OoD training can even be enhanced
by employing meta classifiers. The removed FP OoD pre-
dictions are rather small. However, we already consider one
single pixel as FP OoD object prediction if that pixel is in-
correctly predicted to be OoD. One could also define an
OoD prediction to have a minimum amount of pixels. As
our main focus is the reduction of overlooked OoD objects,
we stick to the definition of equation (6) and consider an
OoD object to be found if at least one pixel of that object
is correctly classified as OoD. Therefore, small OoD seg-
ments are also fed through the meta classification model.
Our two step method, consisting of entropy maximization
and meta classification, extends segmentation networks by
an improved OoD detection capability and unites both tasks
in one model.

J. Meta Classification Feature Analysis

Least angle regression (LARS) is a model selection algo-
rithm. We use this algorithm to select the linear model that
fits best the meta classification responses g(µ) subject to an
L1 penalty term for the model coefficients β ∈ Rm = R83,
c.f . equation (19). LARS identifies the variables most cor-
related with the response. This selection method starts with
all coefficients β1 = . . . = βp = 0. In each step, one
variable at a time is added to the set of active predictor vari-
ables. Thus, LARS adds the best feature µi, i = 1, . . . ,m
to include in the active set, i.e. features show better correla-
tion with the responses the earlier they are added. The coef-
ficient of the added feature variable is continuously moved
from 0 to its least squares coefficient until another variable
µj has as much correlation with the response. This proce-
dure is then repeated with the coefficients of the features in
the active set, now including µj , until the active set reaches
a predefined size.

Figure 20 visualizes the coefficients paths in the LARS
algorithm for meta classification metrics. The correlation
and therefore the impact of metrics are compared when the
underlying segmentation CNN is in its plain version and
also when OoD training is applied. As entropy threshold
t = 0.3 is chosen as this gives us the best linear models for
both meta classification cases with an average precision of
98.84 and 99.53, respectively, see figure 3.

We observe that in general features become active later
when OoD training is applied, i.e. ||β||1/max ||β||1 is
greater when the i-th variable is added to the active set.
This implies that the hand-crafted metrics have higher cor-
relations with the meta classification response and there-
fore have greater impact on the meta classification perfor-
mance. After OoD training the entropy E has become the
most important metric. The entropy and its variance when
restricted to the interior of a segment are among the first
ten active variables as well (the eighth and ninth active vari-
able). Without OoD training the softmax probability for the
road has the highest correlation, with the entropy metric be-
ing the seventh feature in the active set. This analysis shows
that the entropy boost due to OoD training has a positive
effect on the meta classification performance for entropy
based OoD object predictions.

Using linear models as meta classifiers, such as logistic
regressions in our case, allows us to track each variable of
the meta model. LARS is an effective way of analyzing the
correlation of variables with the respective response in lin-
ear models. Besides being a very lightweight, such a meta
classifier contributes as monitoring method to safer as well
as more transparent deep learning applications.
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OoD training OoD training + meta classifier

Figure 18: OoD detection for one scene with different
combinations of entropy thresholding for the plain model,
entropy thresholding after OoD training and meta classi-
fication. For all the OoD predictions the same threshold
score of t = 0.5 was used. The red segments indicate OoD
object predictions.

OoD training OoD training + meta classifier

OoD training OoD training + meta classifier

Figure 19: OoD detection performed by the OoD-trained
network with and without meta classifiers. The red seg-
ments indicate OoD object predictions.
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Figure 20: Least angle regression of the meta classifier applied to the softmax output before (left) and after OoD training
(right) is applied. The entropy threshold is set to t = 0.3 as the experiments showed this threshold yielding the most efficient
meta classification models. The 12 meta classification features having the highest correlation are displayed for each model.

K. OoD Detection Methods Description and
Run-time comparison

After describing the applied OoD detection methods of
our experiments in more detail, we provide a comparison of
inference times in order to judge the methods’ suitability as
an online application.

K.1. Methods

Most methods for OoD detection perform on image-
level. However, the state-of-the-art methods for OoD detec-
tion can be adapted to semantic segmentation in a straight-
forward manner. As a reminder, we denote the pixel-wise
softmax probability at pixel location z ∈ Z with fz(x) ∈

(0, 1)|C| for an image x ∈ X , see also section 3.2.

Maximum softmax probability. The pixel-wise maxi-
mum softmax probability is a commonly used baseline for
OoD detection. We apply this metric as OoD score for each
pixel z ∈ Z:

1−max
j∈C

fz
j (x) = 1− fz

ĉ(z)(x), x ∈ X . (20)

ODIN. Let τ ∈ R \ {0} be a temperature scaling parame-
ter and δ ∈ R a perturbation magnitude. We first add small



perturbations to each pixel z ∈ Z of image x ∈ X :

x̃z = xz − δsign
(
− ∂

∂xz
log fz

j∗(x)

)
. (21)

Then, the OoD score is obtained similar to the maximum
softmax probability:

1−max
j∈C

fz
j (x̃)/τ . (22)

Mahalanobis distance. Let h(·) denote the output of the
penultimate layer of a CNN. Under the assumption that h(·)
is a class conditional Gaussian, i.e.

P (hz(x) | yz(x) = j) = N (hz(x) | µj ,Σj) ∀x ∈ X (23)

we compute the Mahalanobis distance as OoD score for
each pixel z ∈ Z:

min
j∈C

{
(hz(x)− µ̂j)

T Σ̂−1
j (hz(x)− µ̂j)

}
(24)

where µ̂j and Σ̂j are estimates for class mean µj and class
covariance Σj , respectively, of the latent features in the
penultimate layer (see equation (23)).

Monte Carlo dropout. Let S ∈ N denote the number of
Monte Carlo sampling rounds and let p̂zj (x) = (fz

j (x))
S
s=1

denote the softmax probabilities of class j ∈ C for samples
s ∈ {1, . . . , S}. We consider the sum of variances of each
class as OoD score for each pixel z ∈ Z:∑

j∈C
Var

(
p̂zj (x)

)
, x ∈ X (25)

where Var(·) is the empirical variance function. Regard-
ing Monte Carlo dropout as baseline, we conducted exper-
iments also with the mutual information. However, we ob-
served worse anomaly detection performance compared to
the sum over variances.

K.2. Inference Time Comparison

Methods that estimate uncertainty are relevant for many
applications involving deep learning. In practice, monitor-
ing systems need to compute uncertainty in real time in or-
der to provide online applicability. Therefore, one crucial
factor is the run-time of OoD detection methods. In this
subsection we compare the inference time, i.e. the time from
feeding an image through a model to obtaining pixel-wise
OoD scores. We report the results in table 4. For reasons
of comparison, we choose the same input and the same seg-
mentation network architecture for all evaluated methods.
We observe that our OoD training approach is highly effi-
cient in terms of run time, only being outperformed by the

time in s ↓
OoD detection method per image

Maximum Softmax 1.52
Entropy Thresholding 2.39
ODIN 19.63
Monte Carlo Dropout 33.48
Mahalanobis Distance 72.54
Ours: OoD training + entropy thresholding 2.38

Table 4: Run time comparison of the different OoD detec-
tion methods. The inference time for one image is reported
in seconds. For all methods the same input as well as the
same underlying segmentation network is used.

LaF test AUPRC Fishy val AUPRC City val mIoU

OoD train 72.58± 04.30 73.51± 06.12 88.95± 00.41
Baseline 46.00± 00.00 27.54± 00.00 90.30± 00.00

Table 5: Averaged performance scores over 8 random seeds
(for COCO subsampling) and their corresponding standard
deviations on LostAndFound, Fishyscapes and Cityscapes.
For each run, 10 epochs of OoD training were executed with
DeepLabV3+ and λ = 0.9.

weak maximum softmax probability baseline. However, the
gap is less than one second. Compared to the remaining
methods, the time difference is more substantial, ranging
from 17 seconds for ODIN up to 70 seconds for the Maha-
lanobis distance.

L. Entropy Maximization with Different Seeds
For entropy maximization, a subset of images from the

COCO dataset is used. This subset is randomly sampled,
c.f . section 5. To investigate how different random seeds
affect the presented results of this work, we included aver-
age performance scores over multiple seeds and the corre-
sponding standard deviations in table 5, where we report the
major metric for all considered datasets. In these additional
experiments, we even observe scores better than those re-
ported in the paper.


