
[Supplementary] Building-GAN: Graph-Conditioned Architectural Volumetric
Design Generation

Kai-Hung Chang1 Chin-Yi Cheng1 Jieliang Luo1 Shingo Murata2 Mehdi Nourbakhsh1 Yoshito Tsuji2

1Autodesk Research, United States , 2Obayashi AI Design Lab, Japan

1. Dataset

Figure 1. Volumetric design samples in the synthetic dataset

Figure 2. Continued

The synthetic dataset contains 120,000 volumetric de-



signs that are represented in voxel graph with JSON format.
They can also be converted into either conventional voxels,
meshes, or solid geometries. For each design, the site condi-
tions such as the shape and maximum height are randomly
generated from the distribution shown in Figure 3 and 4.
The site conditions in Building-GAN are also represented
in voxel graphs as part of the input conditions. Other con-
ditions, such as the targeted TPR and FAR, and the input
program graph (bubble diagram) are all restored in JSON
format.

Figure 3. Number of stories distribution

Figure 4. Site area distribution

Figure 1 and 2 present several examples in the synthetic
dataset. We apply patterns and rules provided by profes-
sional architects to generate this dataset. For example, we
can observe that some of the buildings have symmetric el-
evators facing each other (e.g., top left in Figure 1), while
some corridors form left and right wings for the same set of
functional spaces (e.g., bottom right in Figure 1. Also, the
first story usually has a different layout than other stories

due to the entrance and lobby requirements for commercial
buildings. Moreover, the first story often has a higher ceil-
ing compared to other floors.

Besides the interior functionalities, building façades, i.e.,
the exterior shapes of buildings, is also an important aes-
thetic factor to consider in the architectural design process.
To increase the façade’s variety in this dataset, we generate
story partition patterns that divide stories into groups. For
instance, the top two stories in the top left in Figure 1 have
a different shape than the stories below them and therefore
create a shape feature in 3D. In practice, such a shape fea-
ture can have functional purposes such as a terrace or roof
garden. Please refer to Section 7 Case Study for a architect-
generated building design example.

2. Implementation Detail

We implement our model in PyTorch. The latent dimen-
sion is 128 and the noise dimension (for both program and
voxel graphs) is 32. The message passing steps in program
and voxel GNN are 4 and 12 respectively. We summarize
MLP specifications in Table 1 and the pseudo-code of our
generator is given in Algorithm 1.

The 120,000 data is split to 96,000 data as training set
and 24,000 data as test set. We train the models using
two NVIDIA GV100 GPUs and an Intel i7 CPU with 16
cores. The total training epoch is 50 using Adam Optimizer
(b1 = 0.5, b2 = 0.999) and batch size 8. The learning
rates of the generator and the discriminator are both 0.0001.
The generator updates its parameters every 5 discriminator
update steps.

Algorithm 1 Generator
Input: program graph x, voxel graph v, noise zp, zv

1: Program GNN
x0 ← Program Graph Encoder(x, zp)
for t = 0 to T − 1 do
xt+1 ← Program Graph Update(xt)

end for

2: Voxel GNN
v0 ← Voxel Graph Encoder(v, zv) + PE(v)

, , v0 ← Pointer(v0, xT )
for t = 0 to T − 1 do
vt+1 ← Voxel Graph Update(vt)
if t < T − 1 then

, , vt+1 ← Pointer(vt, xT ) . . . (Optional)
end if

end for
maskT , attT , vT ← Pointer(vT , xT )



Generator

Program GNN
Encoder MLP Dense(input=5+32, output=128)
Message MLP Dense(input=256, output=128)
Update MLP Dense(input=384, output=128,act=LeakyReLU)

Voxel GNN

Encoder MLP Dense(input=4+32, output=128)
Message MLP Dense(input=256+3, output=128)
Update MLP Dense(input=256, output=128,act=LeakyReLU)
Mask MLP Dense(input=128, middle=64, output=2)

Attention Wx, Wv Dense(input=128, output=128)
Discriminator

Voxel GNN

Feature Encoder MLP Dense(input=4, output=128)
Label Encoder MLP Dense(input=6, output=128)

Message MLP Dense(input=512+3, output=256)
Update MLP Dense(input=512, output=256,act=LeakyReLU)

Building Decoder MLP Dense(input=256, middle=128, output=1,act=Sigmoid)
Story Decoder MLP Dense(input=256, middle=128, output=1,act=Sigmoid)

Table 1. Model specifications.

Figure 5. The network architecture of the 3D Descriptor Net used for FID computation

Figure 6. Synthesized examples by 3D Descriptor Net

3. 3D Descriptor Network for FID score

The backbone of the inference network used for FID
computation is 3D Descriptor Net. We replace all convo-
lution layers with 6 residual blocks due to the higher com-
plexity of our data and insert a dense layer to convert the 128

dimension embedding to a scalar energy value. The model
architecture is illustrated in Figure 5. We train the model for
400 epochs when the average mean square error decreases
to 0.0121. Some synthesized volumetric designs generated
unconditionally by the trained 3D Descriptor Network are
visualized in Figure 6.



Figure 7. More results generated from Building-GAN. Left: Input Program Graph. Right: Output Volumetric Design.

4. Additional Results

4.1. Program Graph to Volumetric Design

Figure 7 to 9 shows additional results generated by
Building-GAN given the program graphs (bubble dia-

grams).

4.2. Floor Plans from Volumetric Design

Figure 10 to 12 provide examples of floor plan lay-
outs sliced from volumetric designs generated by Building-
GAN.



Figure 8. Continued.



Figure 9. Continued.



Figure 10. Floor plan layouts from volumetric design.



Figure 11. Continued.



Figure 12. Continued.



5. FAR and TPR Study
We extend our comparative study and ablation study con-

ducted in Section 5 on two more metrics: Floor Area Ratio
(FAR) distance and Target Program Ratio (TPR) accuracy.
The results are shown in Table 2 and Table 3 respectively.
We use the difference between the actual FAR and the target
FAR over the target FAR to calculate the FAR distance for
each design. The TPR accuracy of each design is calculated
as 1 minus the sum of the absolute difference between the
actual program ratio and the target program ratio of each
room type. All results are averaged over 10,000 samples.

Table 2 shows that TPR improves slightly when we in-
crease the number of message passing layers, while FAR
slightly decreases. We can also see that both FAR and TPR
improve while raising the frequency for the pointer module.
Table 3 shows that building discriminator helps significantly
on both FAR and TPR since these two values are building-
level properties.

Method Parameter FAR TPR
House-GAN - 0.853 0.528
Ours - 1.210 0.772

Voxel Layer
(Pointer Frequency
= every 2 steps)

4 1.075 0.744
6 1.159 0.759
8 1.117 0.749

10 1.144 0.754
12 1.210 0.772

Pointer Frequency
(Voxel Layer = 12)

first + last 2.026 0.512
every 6 steps 1.290 0.743
every 3 steps 1.393 0.734
every 2 steps 1.210 0.772

Table 2. Quantitative evaluation using FAR distance and TPR ac-
curacy. We compare our baseline model to House-GAN. We also
experiment baseline models with different numbers of voxel layer
and pointer frequencies.

Ablation Study FAR TPR
Ours 1.210 0.772
Story discriminator only 2.026 0.207
Building discriminator only 1.247 0.717
No PE 1.260 0.731
No PE + No RP 1.065 0.673

Table 3. Ablation study results of FAR distance and TPR accuracy
on discriminator, positional encoding (PE), and relative position
(RP).

In our best model, TPR is around 77% accurate, and
FAR is around 1.2, which means about 15-20% error on
each floor. Both numbers are acceptable given there are no
explicit loss terms applied to these two conditions. How-

ever, we found that these two values are relatively trivial to
learn compared to connectivity. First, FAR is highly depen-
dent on the number of stories, i.e., higher buildings have
higher FAR. Since the number of stories is given by the
program graph, we can expect the FAR of the generated
designs to have similar distribution if the model learns the
overall shape distribution. Secondly, although TPR values
vary in each program graph, they are following some prior
design rules. For example, there should not be any building
with elevators covering more than 30% of the floor area.
Therefore, as long as the model learns the general type dis-
tribution on voxel graphs, TPR will not be significantly off.
Based on the analysis above, we choose not to use TPR and
FAR as our evaluation metrics.

6. User Study Details
Figure 13 shows a screenshot of our user study interface.

A subject is presented with annotations of the room types
on the top, followed by a pair of generated volumetric de-
signs for each question. In addition, a reference page is
provided to show a set of ground-truth volumetric designs,
as shown in Figure 14. Each subject is given 48 questions
and asked to choose one of the three possible answers (“A
is better”, “B is better”, “Similar”), where the entire session
takes around 20 minutes to be completed. The generated
sample pairs come from pairs of randomly selected models
among HouseGAN, Building-GAN, and ground-truth. We
enforce that each possible pair of models is selected exactly
16 times during the entire session.

Figure 13. A screenshot of our user study interface: the annota-
tions appear on the top, followed by a pair of generated samples
for each question.

Figure 14. A screenshot of the reference page of our user study.



7. Case Study
7.1. Workflow and Setup

We invite an architect to go through the design process
using Building-GAN and see if he can speed up the current
workflow and create good volumetric designs. The typical
workflow using conventional tools is as follow:

1. Collect the project information, including site boundary,
height restriction, FAR, and the desired program require-
ments (TPR) from the client.

2. Create the bubble diagram and drawing the partitions or grids
on the site.

3. Make 2D drawings, 3D models, or physical models using
foam or foam board to create volumetric designs.

4. Arrange functional space, also called “core” in the architec-
tural industry, including elevators, stairs, restrooms, mechan-
ical rooms.

5. Repeat from step 2 to 4 until the design is satisfying.

6. Draw and model the interior details as well as the façade
design.

7. Create drawings, renderings, and presentation slides.

8. Present to the client and repeating from any of the previous
steps if the client disagrees with the current proposal.

Based on the evaluation from a professional architecture
firm, this process usually takes about two to three weeks
with three architectural designers. Building-GAN is de-
signed for speeding up the loop from steps 2 to 5, where
the user can quickly specify the requirements and explore
the design options interactively by modifying the bubble di-
agram and voxel partitions. In this case study, we ask the ar-
chitect to create the volumetric design using Building-GAN
and complete step 6 and 7. We measure the time he spends
on each step and collect feedback from him.

7.2. Results

Tasks Time (hrs)
Draw program graph and site partitions 0.2
Explore the design options 0.25
Modify the generated volumetric design 1
Design the interior and facade 8
Choose materials and set up for rendering 2.5
Render images from different angles 3

Table 4. Time spent by the architect in each task of the case study.

As shown in Table 4, the architect uses only 10 minutes
to set up the problem and 15 minutes to find the desired
volumetric design. The total labor hours are reduced to less

than two days. Although more adjustment and documenta-
tion work might be needed for a formal presentation to the
client, the architect does feel a significant speed up on ex-
ploring valid design options while still being able to drive
the design idea by himself. This is an important feedback
for us–Building-GAN can help complete professional level
tasks while making the architect feel their creativity is not
limited nor replaced by providing real-time interaction with
the system.

In addition, we found that the architect can easily modify
the flawed results generated from Building-GAN. As long
as the generated design is conceptually or roughly correct,
meaningful, or inspiring, the architect can fix those flaws
and move on to the next stage. Examples can be found in
Figure 15. The rendered images of the completed building
design are shown in Figure 17 and 18.

Figure 15. Comparison between the Building-GAN output and the
modified volumetric design by the architect. There are five major
types of modifications: 1) extending the stairs and elevators to
the roof; 2) adjusting the boundaries of rooms for alignments; 3)
filling the gaps; 4) removing redundant rooms; 5) expanding or
shrinking the required space.



8. Failed Attempts
The failure cases shown in the paper is very likely be-

cause our discriminator only observes the program types on
the voxel nodes to evaluate whether the entire design is re-
alistic or not. Since the program graph is not taken as input,
the discriminator cannot critic on missing nodes and miss-
ing edges on the program graph, nor the fragmented layouts
(disconnected rooms). To resolve this issue, we experiment
with aggregating the voxel node embeddings back to the
program nodes. More specifically, the attention output from
the generator indicates the program node selected by each
voxel node, and we aggregate the voxel node embeddings
that point to the same program node together as illustrated
in Figure 16. The aggregated embedding is expected to pro-
vide information that tells if there’s no voxel node pointing
to the program node and if the voxel nodes form connected
rooms. Though the attempt fails to generate promising re-
sults, we think it is helpful to share the lessons learned.

Figure 16. We tried aggregating the voxel embeddings back to pro-
gram graph, but the GAN training is not stable.

We experiment with two approaches that apply this con-
cept. First, a program discriminator can be designed by ag-
gregating the voxel node embeddings to the program nodes.
Then the program discriminator classifies each program
node. Additional message passing can be added before the
aggregation based on ”same program type edges (shown
in 16)” or after the aggregation to identify missing edges.
However, the GAN training becomes unstable after adding
the program discriminator. It is possibly due to the dynamic
aggregation from the generated designs. This operation is
also non-differentiable with respect to the attention output
computed by the generator since it is used as aggregation in-
dices. The other approach is to take the voxel embeddings
from the generator and apply an explicit link prediction loss
using contrastive learning. The positive and negative pairs
are sampled from program edges and missing edges respec-
tively. Cosine similarity and InfoNCE loss are used to en-
courage connected program nodes to have more similar ag-
gregated embeddings. The link prediction loss is added to
the GAN loss with a specific weight. Our experiments also

show unstable GAN training after we add the link predic-
tion loss. From the failed attempts, we learn that it is hard
to provide stable gradients by aggregating the voxel embed-
dings back to program nodes. We leave this challenge for
future work.



Figure 17. Results of the design process by the architect using Building-GAN.



Figure 18. Continued.


