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1. Appendix
In this supplementary document, we provide

several additional results that further bring out
the benefits of our approach. We start with a
visualization of the predicted uncertainties per-frame,
across different datasets in Section 2. Followed by a brief
review of alternative formulations to Neural Uncertainty
Quantifier (NUQ) that one may come up with in Section 3
and demonstrate that our proposed formulation performs the
best among these alternatives. In Section 4, we discuss the
details of the architectural design of the NUQ framework.
Next, in Section 5, we present the derivations to Eq. 9
and 11 in the paper. We then quantitatively evaluate the
diversity of the generated futures in Section. 6. We present
several qualitative results thereafter, which also showcases
the diversity in frame generation of NUQ. We list these
items below:

1. Uncertainty Visualization

2. Alternative formulations of NUQ.

3. Architectural Details.

4. Derivations for Eq. 9 and 11.

5. Quantitatively evaluate the diversity of the generated
samples.

6. Qualitative Results on all datasets

2. Uncertainty Visualizations
Figure 1 visualizes the scaled uncertainty values against

the visual frames, across the SMMNIST and BAIR Push
datasets, each trained with 2000 samples. See the caption of
the figure for more details.

3. Alternative Formulations
Is NUQ the best formulation that one could have for quan-

tifying uncertainty within a stochastic prediction model? In
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Figure 1. Top two rows: Evolution of scaled uncertainty on the
SMMNIST dataset (with NUQ trained with 2,000 training samples
on the SMMNIST Dataset) against time-steps. The plot shows
the increase in uncertainty co-occurs with the bounce of the digit
against the boundary. Bottom two rows: Scaled Uncertainty against
time-steps on BAIR Push (with NUQ trained with 2000 training
samples on the BAIR Push Dataset), showing that uncertainty co-
occurs with the occlusion of the robot arm.

this section, we propose several alternatives and empirically
evaluate them against the results we obtained using our for-
mulation of NUQ, as an answer to this interesting research
question.
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3.1. Alternatives

Alternative Priors: In this variant, we replace our empiri-
cal gamma hyperprior, p(st), with a half-normal distribution
with location set to 0 and scale set to 1, and in another variant
we use the Uniform(0, 1) distribution as the hyperprior.
Using Mahalanobis Distance: In this variant, we use the
frame decoder, pθ(·), to produce a diagonal covariance
instead of producing the parameters of the gamma prior.
Specifically, the output layer of the decoder now predicts
both the future frame and the diagonal elements of Σz

t ,
where we assume Σz

t is n × n, decoded frames are size
d × d, and D = d2. Generating an estimate of the output
covariance matrix thus implies predicting the D terms along
the diagonal of this matrix. We then reshape these D terms
to d× d to match with the pixel resolution of the frames. We
then use this uncertainty (precision) to weigh the MSE at a
pixel level (instead of the precision bt). This uncertainty is
visualized for a sequence in Figure 2.
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Figure 2. Visualization of pixel-wise uncertainty obtained by esti-
mating the variance of the output, directly from the decoder for the
SMMNIST Dataset, trained with 2,000 training samples.

Directly Estimate precision from latent prior: In this
formulation, we repurpose the variance encoder ζλ, to emit
the variance to the MSE, bt, directly. This is in contrast
with the architecture of the variance encoder in NUQ,
where it is used to estimate the sufficient statistics of the
truncated normal distribution, αs̃t and βs̃t . We essentially
replace the final hidden layer of the network with a single
neuron with sigmoid activation in order to realize this setting.

3.2. Alternatives – Results

In Table 1, we provide comparisons of the above alter-
native formulations on the SMMNIST dataset, trained with
2,000 training samples. From the first row, we see that
the Uniform[0, 1] distribution variant under-performs com-
pared to using the gamma distribution as a hyper-prior, as
in NUQ. We surmise that this is due to these distributions
being more spread out over the probability space, as a result
of which they often sample st’s which do not match the true
underlying distribution. This results in the MSE term in the
loss function, being overly weighed when it should not be
and vice-versa. Results for our other alternative, to com-
pute the Mahalanobis-type precision matrix directly from
the frame decoder, is provided in the second row in Table 1;
its performance is similar to the other alternatives. We also
attempted to directly estimate st from the variance of the
latent space prior Σz

t . The results for this setting are shown

in the third row in Table 1. However, this setting performs
poorly suggesting that a deterministic mapping of the Σz

t

to st is not ideal, perhaps because the difference in the un-
certainty distribution in the latent space and in the output
is not accurately modeled this way. Overall, the results in
the table clearly show that our proposed formulation of the
model yields the best empirical performance, nonetheless
some other formulations to our model seem promising.

4. Architectural Details

In this section, we elaborate on some of the architectural
design choices that we made while implementing NUQ. Our
primary objective while designing the architectural frame-
work of NUQ was to ensure that our network’s generation
capacity remained similar to the state-of-the-art baselines,
such as Denton and Fergus [1], such that all gains obtained
by our framework, could be attributed to modeling the pre-
diction uncertainty.

4.1. Frame Encoder

Our frame encoder consists of a hierarchical stack of
2d-convolution filters. For 48 × 48 inputs, we design a
4-layer network. The first layer consists of 64, 4 × 4 2d-
convolutional filters with stride 2 and padding 1, which are
followed by 2d-BatchNorm and LeakyReLU non-linearity.
In every subsequent layers, we keep doubling the number of
filters. For 64× 64 inputs, we adapt this network to make it
a 5-layer one.

4.2. LSTMs

All LSTM modules in our framework, including the se-
quence discriminator, have a single hidden layer with 256-d
hidden states, except for the LSTM in the frame decoder
pθ(·), which has 2 hidden layers, each of 256-d.

4.3. Frame Decoder

We design the frame decoder in congruence with the
frame encoder, so as to permit skip connections between
them, in a U-Net style network [3]. Therefore, our frame de-
coder obeys a similar architecture akin to the frame encoder,
except the 2d-convolution filters are now replaced with 2d-
deconvolution filters and the number of filters in each layer
is doubled (in order to accommodate the skip connection).

4.4. Variance Encoder

Our variance encoder, ζλ(·), is a 2-layer multi-layer per-
ceptron, with LeakyReLU activations, which ultimately pro-
duces the sufficient statistics of the truncated normal distri-
bution governing the posterior in the latent space.



Table 1. Best SSIM, PSNR, and LPIPS scores on the SMMNIST test set after @1, @5, and @Convergence (C) (upto 150) epochs of training 
with alternative formulations of our model using 2,000 training samples. [Key: Best results in bold].

Dataset: SMMNIST SSIM ↑ PSNR ↑ LPIPS ↓
@1 @5 @C @1 @5 @C @1 @5 @C

p(st) ∼ Uniform[0, 1] 0.8173 0.8374 0.8523 17.6 17.95 18.06 0.3442 0.3038 0.198
Estimate bt from the decoder pθ(·) 0.7627 0.7628 0.7828 17.54 17.55 17.55 0.3463 0.3259 0.2225
Estimate bt w/o variance encoder-decoder 0.7450 0.7454 0.7648 16.22 16.53 16.78 0.3469 0.3263 0.2328
NUQ (Ours) 0.8686 0.8638 0.8948 17.76 18.13 18.14 0.3087 0.2836 0.1803

5. Derivations
In this section, we present the derivations of Eq. 9 and

Eq. 11 in the paper. We derive Eq. 9, along the lines
of the variational lower bound derivation in Kingma and
Welling [2]:

log p(xt|bt,x1:t−1) = log p(xt|bt,x1:t−1).

∫
zt

qφ(zt|x1:t)dzt

=

∫
zt

qφ(zt|x1:t) log
p(xt,zt|bt,x1:t−1)

p(zt|x1:t)
dzt

=

∫
zt

qφ(zt|x1:t) log
p(xt,zt|bt,x1:t−1)

qφ(zt|x1:t)
dzt

+

∫
zt

qφ(zt|x1:t) log
qφ(zt|x1:t)

p(zt|x1:t)
dzt

(1)
The second term in the above equation is essentially a

KL-Divergence, which is non-negative. We therefore have:

log p(xt|bt,x1:t−1) ≥
∫
zt

qφ(zt|x1:t) log
p(xt,zt|bt,x1:t−1)

qφ(zt|x1:t)
dzt

=

∫
zt

qφ(zt|x1:t) log
p(xt|x1:t−1,zt, bt)p(zt|x1:t−1)

qφ(zt|x1:t)
dzt

(2)
This yields Eq. 9, when the expression inside the log is split
into two, with the first term amounting to the expectation
term in Eq. 9, while the second one resulting in the KL-term.

Our NUQ framework is a essentially, a hierarchical varia-
tional encoder-decoder network, where the second level of
the hierarchy is described by Eq. 11. Derivation for Eq. 11,
thus proceeds analogously to Eq. 9, as follows:

log p(bt|x1:t−1) = log p(bt|x1:t−1).

∫
st

qλ(st|x1:t−1)dst

=

∫
st

qλ(st|x1:t−1) log
p(bt, st|x1:t−1)

p(st|bt,x1:t−1)
dst

=

∫
st

qφ(st|x1:t−1) log
p(bt, st|x1:t−1)

qλ(st|x1:t−1)
dst

+

∫
st

qλ(st|x1:t−1) log
qλ(st|x1:t−1)

p(st|bt,x1:t−1)
dst

(3)
Like before, the second term in the above equation is

essentially a KL-Divergence, which is non-negative. We

therefore have:

log p(bt|x1:t−1) ≥
∫
st

qλ(st|x1:t−1) log
p(bt, st|x1:t−1)

qλ(st|x1:t−1)
dst

=

∫
st

qλ(st|x1:t−1) log
p(bt|x1:t−1, st)p(st)

qλ(st|x1:t−1)
dst

(4)
When the expression inside the log is split into two, the first
term results in the expectation term in Eq. 11, while the
second one amounts to the KL-term.

6. Quantitative Evaluation of Diversity

(a) SMMNIST - SSIM

(b) BAIR Push - SSIM

Figure 3. Diversity in Generated Futures: Evaluation of diversity in
the generation using SSIM on: (a) SMMNIST, (b) BAIR-Push for
increasing number of candidate futures, computed by comparing
against the ground truth (higher the better). We used 2000 samples
for training NUQ for both datasets.

In order to analyze the extent of diversity in the generated
frames of our model, we first resort to quantitative evaluation.
In Figures 3(a), 3(b), we plot the average SSIM scores (over
time steps) against the number of generated future candidates



(a) SMMNIST-Intra

(b) BAIR-Intra

Figure 4. Diversity in Generated Futures: Evaluation of diversity
in the generation: (a,b) shows diversity in the generated futures
by comparing intra-SSIM distances between all the futures, at a
given time step, and computing the average (lower the better), for
SMMNIST and BAIR Push respectively. For each of these datasets
NUQ was trained with 2000 samples.

per time-step for each of the three datasets. For purposes of
these plots, the SSIM is computed between the generated
samples and the ground-truth. The monotonically increasing
curve, in these figures, suggests straightforwardly, that sam-
pling more future per time step helps in better generation,
resulting from the synthesis of more accurate samples - indi-
cating the model’s diversity. In Figures 4(a), 4(b), we plot
the average SSIM and PSNR scores between every pair of
candidates generated in each time step, against the number
of futures. These plots decrease monotonically, suggest-
ing greater difference (i.e. diversity) between the generated
frames as the number of sampled futures goes up. See the
figure caption for more details.

7. Qualitative Results

We next present visualizations of frames generated us-
ing NUQ vis-á-vis competing baselines, on the SMMNIST,
BAIR push, and KTH Action datasets. Also shown are di-
verse frame generations by NUQ for each of these datasets.

The results in Figures 5, 8, 9, 10, 11, 12, 13, 14, 15, 16
show qualitative generation results on the SMMNIST dataset,
trained with 2000 samples. Besides the superior quality of
the results generated by our method, we note that for some
cases such as in Figures 11, 12, 13 the prediction of the
baseline method simply disappears. We surmise that this
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Figure 5. Visualization of generations by our method versus com-
peting baselines on the SMMNIST Dataset, trained with 2,000
training samples. Further, diverse generations by our method are
also shown.
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Figure 6. Visualization of generations by our method versus com-
peting baselines on the BAIR Robot Push Dataset, trained with
2,000 training samples. Further, diverse generations by our method
are also shown. High motion regions are indicated by a red bound-
ing box, while spatial regions exhibiting high diversity are shown
by a green bounding box.

is due to their inability to learn the motion dynamics of
the digit well, in uncertain environments. In particular, if
the motion is not aptly learnt, then the model often gets
penalized heavily for inaccurately placing a digit (via the
MSE loss), since this results in a high pixel-wise error. In
such a scenario, a model might prefer to not display the digit
at all. However, high stochasticity in the data may not suit
this well and as a result might hurt the generalization. By
intelligently down-weighting the MSE, we circumvent this
problem.

We also see in Figures 6, 17, 21, 18, 22, 23, 24, 25, 19, 20
the performance of different competing methods versus
NUQ on the BAIR push dataset, trained with 2000 sam-
ples. The figures reveal that our method captures the motion
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Figure 7. Visualization of generations by our method versus com-
peting baselines on the KTH Action Dataset, trained with the full
training data of 1,911 training samples. Further, diverse genera-
tions by our method are also shown. Spatial regions exhibiting high
diversity are shown by a green bounding box.

of the robot arm, reasonably well, compared to competing
methods.

Figures 7, 26, 27 present sample generation results by
our method versus competing baselines on the KTH Action
dataset. From the figures, we see that while all of the meth-
ods do a reasonable job of modeling the appearance of the
person, nonetheless the competing methods fail to capture
the motion dynamics well.

Moreover, in some of the aforementioned figures (such as
Figures 8, 9, 10, 17, 6, 20, 26, 27 diverse sample generations
by NUQ is also shown.
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Figure 8. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown.
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Figure 9. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown.
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Figure 10. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown.
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Figure 11. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples. Further, diverse generations by our method are also shown.
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Figure 12. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples.
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Figure 13. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples.
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Figure 14. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples.
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Figure 15. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples.
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Figure 16. Visualization of generations by our method versus competing baselines on the SMMNIST Dataset, trained with 2,000 training
samples.
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Figure 17. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box.



t=3

G
T

Seen Frames Predicted Frames

Denton and Fergus

Ours

t=5 t=13t=4

Hsieh et al.

t=14t=12t=11 t=16

Castrejon et al.

t=15

Ours (Diverse S1)

Ours (Diverse S2)

Figure 18. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box.
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Figure 19. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box.
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Figure 20. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. Further, diverse generations by our method are also shown. High motion regions are indicated by a red bounding box,
while spatial regions exhibiting high diversity are shown by a green bounding box.
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Figure 21. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box.
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Figure 22. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box.
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Figure 23. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box.
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Figure 24. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box.
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Figure 25. Visualization of generations by our method versus competing baselines on the BAIR Robot Push Dataset, trained with 2,000
training samples. High motion regions are indicated by a red bounding box.
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Figure 26. Visualization of generations by our method versus competing baselines on the KTH Action Dataset, trained with the full training
data of 1,911 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box.
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Figure 27. Visualization of generations by our method versus competing baselines on the KTH Action Dataset, trained with the full training
data of 1,911 training samples. Further, diverse generations by our method are also shown. Spatial regions exhibiting high diversity are
shown by a green bounding box.


