Visual Scene Graphs for Audio Source Separation
Supplementary Materials

Moitreya Chatterjee¹ Jonathan Le Roux² Narendra Ahuja¹ Anoop Cherian²
¹University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
²Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA
metro.smiles@gmail.com leroux@merl.com n-ahuja@illinois.edu cherian@merl.com

1. Summary of Supplementary Results

In this supplementary document, we first provide additional details about the challenging Audio Separation in the Wild (ASIW) dataset, which we introduce in this work. These details are provided in Section 2. This is followed by the details of our neural network architecture in Section 3. Finally, we present qualitative results of our visually-guided audio source separation experiments in Section 4, including a user assessment study.

To summarize, below is the list of additional results that we provide:

1. ASIW dataset details.
2. Network architecture details.
3. Additional qualitative results.

2. ASIW Dataset Details

Most prior approaches in visually-guided sound source separation report performances solely in the setting of separating the sounds of musical instruments [3, 15, 14, 2]. However, musical instruments often have very characteristic sounds and thereby the range of variability within a particular instrument category is limited. Moreover, the videos featured in these datasets are often recorded professionally in rather controlled environments, such as an auditorium. Such videos however, may not capture the variety of sounds that we come across in daily-life settings. In order to fill this void, this work introduces the Audio Separation in the Wild (ASIW) dataset.

ASIW is adapted from the recently introduced large-scale AudioCaps dataset [6], which contains 49,838 training, 495 validation, and 975 test videos crawled from the AudioSet dataset [4], each of which is about 10s long. These videos have been carefully captioned manually (by English-speaking Amazon Mechanical Turkers – AMTs). In comparison to other video captioning datasets (such as MSVD or MSRVTT), AudioCaps captions are particularly focused on describing auditory events in the video; which motivated us to consider this dataset for the task of visually-guided sound source separation.

To adapt AudioCaps for our task, we manually construct a dictionary of 306 frequently occurring auditory words from the captions, such as: splashing, flushing, eruptions, or giggling. Another factor we considered in order to select this dictionary is the grounding that the words have in the video; which we call the principal objects in the main paper. The words in the dictionary are selected such that they have a corresponding principal object in the video generating the respective sound. The set of principal objects that we finally selected from AudioCaps consisted of 14 classes, namely: baby, bell, birds, camera, clock, dog, toilet, horse, man/woman, sheep/goat, telephone, trains, vehicle/car/truck, water, and an additional background class, which encompasses words that usually do not consistently ground to a visible principal object in the video. For instance, brushing could ground to a person brushing his/her teeth with a toothbrush or could also map to a painter putting his/her strokes on a canvas. We construct the principal object list from the Visual Genome [8] classes. The number of videos in each of these classes is shown in Table 1. In Figure 1, we show a sample frame from a video in this dataset, highlighting the

![Figure 1. A sample frame from a video in the ASIW dataset, showing the principal object (water, highlighted by a green box) and a set of interacting objects (horse with a rider, highlighted by a blue box).](image-url)
In Section 5, we list the full set of auditory words (in bold-face font), indicating alongside which principal object it is grounded to as well as its frequency in the captions associated with the dataset. While constructing the dataset, all principal object classes which consistently exhibit the same sound are treated as the same class and are indicated in the above list in the same row, separated by a forward-slash (/). For instance, although the class “clock” is different from the class “clock tower”, visually, but since a possible sound emitted by both may be characterized as “donging”, we treat them as equivalent principal objects. We intend to make this dataset publicly available for researchers in the community, upon the acceptance of this work.

3. Network Architecture Details

Our model, the Audio Visual Scene Graph Segmenter (AVSGS) has several components. Below, we list the key details of each of the components.

3.1. Feature Extractor

Our model commences with extracting features, corresponding to bounding boxes in the scene. In order to do so, we use a Faster R-CNN model [10], with a ResNet-101 [5] backbone pre-trained on the Visual Genome Dataset [8]. In order to obtain instrument features for the MUSIC dataset another detector [3] is trained on the the OpenImages dataset [7]. The former gives 2048-dimensional vectors, while the latter gives 512-dimensional vectors. In order to maintain consistency of feature dimensions across objects, we further encode the 2048-dimensional vectors into 512-dimensions through a 2-layer Multi-layer perceptron with dimensions and LeakyReLU activations with negative slope of 0.2. Additionally, there are skip connections between a pair of layers in the encoder and the decoder, with matching spatial resolution of their feature maps. The bottleneck layer has $2 \times 2 \times 512$ dimension and thus the visual feature vector obtained from the pre-processing above is tiled 2×2 times and then concatenated into the network at the bottleneck layer, along the channel dimension.

3.2. Graph Attention Network

Post the object detection and feature extraction, the scene graph is constructed following the method laid out in the Proposed Method section of the paper. The scene graph is then processed by a Graph Attention Network, which has a cascade of the following three components:

Graph Attention Network Convolution: The Graph Attention Network Convolution (GATConv) [12] updates the node features of the graph based on the edge adjacency information by applying multi-head graph message-passing. We use 4 heads in the network and the dimension of the output feature of this network is 512.

Edge Convolution: Next, we employ Edge Convolutions [13] to capture pair-wise interactions, which take in a concatenated vector of 2 objects ($512 \times 2 = 1024$) and generates a 512-dimensional vector.

Pooling Layers: The final step of the Graph Attention Network consists of pooling these feature vectors [9] to obtain a single vector. We concatenate the embeddings obtained by Global Max and Average Pool to obtain this.

3.3. Recurrent Network

Our Recurrent Network is instantiated via a Gated Recurrent Unit (GRU) [1], whose input space and feature dimensions are 512-dimensional.

3.4. Audio Separator Network

A key component of our model is the audio separator network that takes as input a mixed audio track and produces a separated sound source as output, conditioned on a visual feature. The network roughly follows a U-Net [11] style architecture, with the visual feature being concatenated into the network at the bottleneck layer. The network has 7 convolution and 7 up-convolution layers, each with 4×4 filter dimensions and LeakyReLU activations with negative slope of 0.2. Additionally, there are skip connections between a pair of layers in the encoder and the decoder, with matching spatial resolution of their feature maps. The bottleneck layer has $2 \times 2 \times 512$ dimension and thus the visual feature vector obtained from the pre-processing above is tiled 2×2 times and then concatenated into the network at the bottleneck layer, along the channel dimension.

4. Qualitative Results

In this section, we present separated spectrogram visualizations obtained by our method versus competing baselines on both datasets, for a qualitative assessment by the reader. To this end, we show spectrogram separations for audio obtained from a mix of two different videos as well as separations on videos which have a mixture of multiple sound sources.

4.1. Qualitative Visualizations

From the qualitative visualizations presented in Figures 2, 3, 4, 5, 6, 11, 12, 13, 14, 15 we see that AVSGS is better able to separate the audio compared to competing baseline methods on ASIW and MUSIC respectively. We also notice that the separations obtained by AVSGS are more artifact free. Additionally, in Figures 7, 8, 9, 10, 16, 17 we notice that AVSGS is adept at separating multiple sound sources.

<table>
<thead>
<tr>
<th>Baby</th>
<th>Bell</th>
<th>Birds</th>
<th>Camera</th>
<th>Clock</th>
<th>Dogs</th>
<th>Toilet</th>
<th>Horse</th>
<th>Man</th>
<th>Sheep</th>
<th>Telephone</th>
<th>Trains</th>
<th>Vehicle</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1616</td>
<td>151</td>
<td>2887</td>
<td>913</td>
<td>658</td>
<td>1407</td>
<td>838</td>
<td>385</td>
<td>6210</td>
<td>710</td>
<td>222</td>
<td>141</td>
<td>779</td>
<td>378</td>
</tr>
</tbody>
</table>
sources from the same video, as reflected by the difference in the resultant separated spectrograms from the 2 sources.

4.2. Human Preference Evaluations

In order to subjectively assess the quality of audio source separation, we evaluated a randomly chosen subset of separated audio samples from AVSGS and our closest non-MUSIC-specific competitor SofM for human preferability, on both ASIW and MUSIC datasets. Table 2 reports these results and shows a clear preference of the evaluators, for our method over SofM on average 80-90% of the time.
Figure 4. Qualitative separation results on a mixture of two ASIW videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.

Figure 5. Qualitative separation results on a mixture of two ASIW videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.
Figure 6. Qualitative separation results on a mixture of two ASIW videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.

Figure 7. Qualitative separation results on a video with 2 sound sources for the ASIW videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.

Figure 8. Qualitative separation results on a video with 2 sound sources for the ASIW videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.
Figure 9. Qualitative separation results on a video with 2 sound sources for the ASIW videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.

Figure 10. Qualitative separation results on a video with 2 sound sources for the ASIW videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.

Figure 11. Qualitative separation results on a mixture of two MUSIC videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.
Figure 12. Qualitative separation results on a mixture of two MUSIC videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.

Figure 13. Qualitative separation results on a mixture of two MUSIC videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.
Figure 14. Qualitative separation results on a mixture of two MUSIC videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.

Figure 15. Qualitative separation results on a mixture of two MUSIC videos. Sample key frames for both videos are shown. The spectrogram of the mixed audio is plotted as well. Also shown are the separated spectrograms obtained by different methods. Red boxes indicate regions of high differences between ground truth and predicted spectrograms.
Figure 16. Qualitative separation results on a video with 2 sound sources for the MUSIC videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.

Figure 17. Qualitative separation results on a video with 2 sound sources for the MUSIC videos. Sample key frame is shown for the videos are shown. The spectrogram of the separated audio is plotted.
5. List of Auditory Words, Principal Objects, and Frequency in the ASIW Dataset

<table>
<thead>
<tr>
<th>No.</th>
<th>Word</th>
<th>Principal Object</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>babble</td>
<td>baby/child/little girl</td>
<td>45</td>
</tr>
<tr>
<td>2.</td>
<td>babbling</td>
<td>baby/child/little girl</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>cry</td>
<td>baby/child/little girl</td>
<td>1363</td>
</tr>
<tr>
<td>4.</td>
<td>crying</td>
<td>baby/child/little girl</td>
<td>160</td>
</tr>
<tr>
<td>5.</td>
<td>fidget</td>
<td>baby/child/little girl</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>giggling</td>
<td>baby/child/little girl</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>jabbering</td>
<td>baby/child/little girl</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>singing</td>
<td>baby/child/little girl</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>sobbing</td>
<td>baby/child/little girl</td>
<td>9</td>
</tr>
<tr>
<td>10.</td>
<td>sobs</td>
<td>baby/child/little girl</td>
<td>12</td>
</tr>
<tr>
<td>11.</td>
<td>spitting</td>
<td>baby/child/little girl</td>
<td>2</td>
</tr>
<tr>
<td>12.</td>
<td>chiming</td>
<td>bell</td>
<td>44</td>
</tr>
<tr>
<td>13.</td>
<td>resonating</td>
<td>bell</td>
<td>1</td>
</tr>
<tr>
<td>14.</td>
<td>rhythmically</td>
<td>bell</td>
<td>47</td>
</tr>
<tr>
<td>15.</td>
<td>warning</td>
<td>bell</td>
<td>59</td>
</tr>
<tr>
<td>16.</td>
<td>calling</td>
<td>bird/birds/duck/ducks</td>
<td>10</td>
</tr>
<tr>
<td>17.</td>
<td>cheep</td>
<td>bird/birds/duck/ducks</td>
<td>15</td>
</tr>
<tr>
<td>18.</td>
<td>chipping</td>
<td>bird/birds/duck/ducks</td>
<td>4</td>
</tr>
<tr>
<td>19.</td>
<td>chirp</td>
<td>bird/birds/duck/ducks</td>
<td>2274</td>
</tr>
<tr>
<td>20.</td>
<td>chirping</td>
<td>bird/birds/duck/ducks</td>
<td>53</td>
</tr>
<tr>
<td>21.</td>
<td>flapping</td>
<td>bird/birds/duck/ducks</td>
<td>14</td>
</tr>
<tr>
<td>22.</td>
<td>flutter</td>
<td>bird/birds/duck/ducks</td>
<td>35</td>
</tr>
<tr>
<td>23.</td>
<td>gobbling</td>
<td>bird/birds/duck/ducks</td>
<td>1</td>
</tr>
<tr>
<td>24.</td>
<td>quacking</td>
<td>bird/birds/duck/ducks</td>
<td>104</td>
</tr>
<tr>
<td>25.</td>
<td>quaking</td>
<td>bird/birds/duck/ducks</td>
<td>7</td>
</tr>
<tr>
<td>26.</td>
<td>squawk</td>
<td>bird/birds/duck/ducks</td>
<td>73</td>
</tr>
<tr>
<td>27.</td>
<td>squawking</td>
<td>bird/birds/duck/ducks</td>
<td>4</td>
</tr>
<tr>
<td>28.</td>
<td>vocalize</td>
<td>bird/birds/duck/ducks</td>
<td>193</td>
</tr>
<tr>
<td>29.</td>
<td>whistling</td>
<td>bird/birds/duck/ducks</td>
<td>100</td>
</tr>
<tr>
<td>30.</td>
<td>click</td>
<td>camera</td>
<td>913</td>
</tr>
<tr>
<td>31.</td>
<td>donging</td>
<td>clock/clocks/clock tower</td>
<td>1</td>
</tr>
<tr>
<td>32.</td>
<td>locking</td>
<td>clock/clocks/clock tower</td>
<td>2</td>
</tr>
<tr>
<td>33.</td>
<td>tick</td>
<td>clock/clocks/clock tower</td>
<td>468</td>
</tr>
<tr>
<td>34.</td>
<td>ticking</td>
<td>clock/clocks/clock tower</td>
<td>187</td>
</tr>
<tr>
<td>35.</td>
<td>barking</td>
<td>dog/dogs</td>
<td>591</td>
</tr>
<tr>
<td>36.</td>
<td>barks</td>
<td>dog/dogs</td>
<td>1</td>
</tr>
<tr>
<td>37.</td>
<td>growl</td>
<td>dog/dogs</td>
<td>305</td>
</tr>
<tr>
<td>38.</td>
<td>grumbling</td>
<td>dog/dogs</td>
<td>2</td>
</tr>
<tr>
<td>39.</td>
<td>howl</td>
<td>dog/dogs</td>
<td>127</td>
</tr>
<tr>
<td>40.</td>
<td>oinking</td>
<td>dog/dogs</td>
<td>119</td>
</tr>
<tr>
<td>41.</td>
<td>panting</td>
<td>dog/dogs</td>
<td>45</td>
</tr>
<tr>
<td>42.</td>
<td>playfully</td>
<td>dog/dogs</td>
<td>10</td>
</tr>
<tr>
<td>43.</td>
<td>responding</td>
<td>dog/dogs</td>
<td>3</td>
</tr>
<tr>
<td>44.</td>
<td>shakes</td>
<td>dog/dogs</td>
<td>1</td>
</tr>
<tr>
<td>45.</td>
<td>whine</td>
<td>dog/dogs</td>
<td>196</td>
</tr>
<tr>
<td>46.</td>
<td>yap</td>
<td>dog/dogs</td>
<td>7</td>
</tr>
<tr>
<td>47.</td>
<td>emptying</td>
<td>drain/toilet/toilet seat</td>
<td>1</td>
</tr>
<tr>
<td>48.</td>
<td>flush</td>
<td>drain/toilet/toilet seat</td>
<td>824</td>
</tr>
<tr>
<td>49.</td>
<td>flushing</td>
<td>drain/toilet/toilet seat</td>
<td>13</td>
</tr>
<tr>
<td>50.</td>
<td>cantering</td>
<td>horse/horses</td>
<td>1</td>
</tr>
<tr>
<td>51.</td>
<td>clop</td>
<td>horse/horses</td>
<td>313</td>
</tr>
<tr>
<td>52.</td>
<td>clopping</td>
<td>horse/horses</td>
<td>33</td>
</tr>
<tr>
<td>53.</td>
<td>galloping</td>
<td>horse/horses</td>
<td>18</td>
</tr>
<tr>
<td>54.</td>
<td>neighs</td>
<td>horse/horses</td>
<td>2</td>
</tr>
<tr>
<td>55.</td>
<td>oping</td>
<td>horse/horses</td>
<td>1</td>
</tr>
<tr>
<td>56.</td>
<td>riding</td>
<td>horse/horses</td>
<td>4</td>
</tr>
<tr>
<td>57.</td>
<td>oping</td>
<td>horse/horses</td>
<td>1</td>
</tr>
<tr>
<td>58.</td>
<td>trotting</td>
<td>horse/horses</td>
<td>12</td>
</tr>
<tr>
<td>59.</td>
<td>achoo</td>
<td>man/woman/young man/people</td>
<td>1</td>
</tr>
<tr>
<td>60.</td>
<td>amplified</td>
<td>man/woman/young man/people</td>
<td>9</td>
</tr>
<tr>
<td>61.</td>
<td>applaud</td>
<td>man/woman/young man/people</td>
<td>289</td>
</tr>
<tr>
<td>62.</td>
<td>applauding</td>
<td>man/woman/young man/people</td>
<td>22</td>
</tr>
<tr>
<td>63.</td>
<td>appreciatively</td>
<td>man/woman/young man/people</td>
<td>1</td>
</tr>
<tr>
<td>64.</td>
<td>articulately</td>
<td>man/woman/young man/people</td>
<td>1</td>
</tr>
</tbody>
</table>
65. **breathing**: man/woman/young man/people 132
66. **burp**: man/woman/young man/people 267
67. **celebrate**: man/woman/young man/people 2
68. **chant**: man/woman/young man/people 50
69. **chanting**: man/woman/young man/people 2
70. **cheer**: man/woman/young man/people 623
71. **cheering**: man/woman/young man/people 103
72. **chuckle**: man/woman/young man/people 98
73. **clapping**: man/woman/young man/people 40
74. **communicating**: man/woman/young man/people 6
75. **conversation**: man/woman/young man/people 158
76. **converse**: man/woman/young man/people 91
77. **coughing**: man/woman/young man/people 21
78. **coughs**: man/woman/young man/people 1
79. **crunching**: man/woman/young man/people 33
80. **cursely**: man/woman/young man/people 1
81. **dialog**: man/woman/young man/people 4
82. **echo**: man/woman/young man/people 141
83. **eruption**: man/woman/young man/people 3
84. **exhaling**: man/woman/young man/people 1
85. **falsetto**: man/woman/young man/people 1
86. **fighting**: man/woman/young man/people 3
87. **flicking**: man/woman/young man/people 1
88. **folding**: man/woman/young man/people 1
89. **forklift**: man/woman/young man/people 1
90. **gag**: man/woman/young man/people 6
91. **girlish**: man/woman/young man/people 1
92. **glee**: man/woman/young man/people 1
93. **hoots**: man/woman/young man/people 1
94. **indistinctly**: man/woman/young man/people 7
95. **inhaler**: man/woman/young man/people 20
96. **kaboom**: man/woman/young man/people 1
97. **laugh**: man/woman/young man/people 3091
98. **laughing**: man/woman/young man/people 270
99. **manspaking**: man/woman/young man/people 1
100. **melody**: man/woman/young man/people 24
101. **moaning**: man/woman/young man/people 1
102. **monotone**: man/woman/young man/people 10
103. **murmur**: man/woman/young man/people 91
104. **narrating**: man/woman/young man/people 11
105. **playing**: man/woman/young man/people 123
106. **prancing**: man/woman/young man/people 1
107. **recording**: man/woman/young man/people 8
108. **reverberate**: man/woman/young man/people 9
109. **reverberating**: man/woman/young man/people 4
110. **screaming**: man/woman/young man/people 32
111. **scuffling**: man/woman/young man/people 4
112. **sigh**: man/woman/young man/people 39
113. **sighing**: man/woman/young man/people 2
114. **slurp**: man/woman/young man/people 10
115. **slurping**: man/woman/young man/people 1
116. **sneezing**: man/woman/young man/people 24
117. **sniffing**: man/woman/young man/people 7
118. **sniveling**: man/woman/young man/people 1
119. **snort**: man/woman/young man/people 65
120. **stuttering**: man/woman/young man/people 4
121. **subdued**: man/woman/young man/people 5
122. **thumping**: man/woman/young man/people 123
123. **thunderous**: man/woman/young man/people 5
124. **uproar**: man/woman/young man/people 4
125. **uproarious**: man/woman/young man/people 1
126. **uproariously**: man/woman/young man/people 1
127. **verbally**: man/woman/young man/people 2
128. **vigorously**: water/water tank/water bottle 17
129. **yelling**: man/woman/young man/people 74
130. **yodel**: man/woman/young man/people 1
131. baaiing: sheep/goat/goats/chicken 114
132. bleat: sheep/goat/goats/chicken 583
133. cackle: sheep/goat/goats/chicken 13
134. answering: telephone 4
135. ringing: telephone 218
136. chug: train/trains/train car/train cars/passenger train/train engine 133
137. sounding: train/trains/train car/train cars/passenger train/train engine 8
138. backing: vehicle/car/cars/truck/trucks 2
139. beeps: vehicle/car/cars/truck/trucks 2
140. brake: vehicle/car/cars/truck/trucks 76
141. braking: vehicle/car/cars/truck/trucks 2
142. breaks: vehicle/car/cars/truck/trucks 1
143. driving: vehicle/car/cars/truck/trucks 25
144. honk: vehicle/car/cars/truck/trucks 584
145. racing: vehicle/car/cars/truck/trucks 50
146. raggedly: vehicle/car/cars/truck/trucks 1
147. roving: vehicle/car/cars/truck/trucks 2
148. shifting: vehicle/car/cars/truck/trucks 16
149. silently: vehicle/car/cars/truck/trucks 3
150. skidding: vehicle/car/cars/truck/trucks 15
151. draining: water/water tank/water bottle 1
152. drip: water/water tank/water bottle 106
153. flowing: water/water tank/water bottle 9
154. gushing: water/water tank/water bottle 1
155. hisses: water/water tank/water bottle 1
156. jostling: water/water tank/water bottle 2
157. leaking: water/water tank/water bottle 1
158. pouring: water/water tank/water bottle 14
159. raining: water/water tank/water bottle 6
160. splashing: water/water tank/water bottle 211
161. splay: water/water tank/water bottle 1
162. trickling: water/water tank/water bottle 22
163. woosh: water/water tank/water bottle 3
164. audible: background 22
165. audibly: background 1
166. banging: background 191
167. beat: background 53
168. beatable: background 1
169. beating: background 5
170. beep: background 910
171. bellow: background 2
172. blast: background 79
173. blowing: background 183
174. boiling: background 1
175. bouncing: background 6
176. brushing: background 4
177. buffeting: background 3
178. bumble: background 1
179. burble: background 31
180. burbling: background 1
181. burning: background 4
182. bursting: background 6
183. buzzer: background 13
184. chang: background 1
185. chewing: background 4
186. chocking: background 1
187. choke: background m 6
188. churning: background 3
189. clacking: background 173
190. clang: background 197
191. clank: background 597
192. clanking: background 334
193. clattering: background 39
194. clinking: background 76
195. clumping: background 1
196. clunking: background 8
197. cluttering: background 2
198. cocking: background 9
199. collision: background 3
200. crack: background 126
201. cracking: background 24
202. cranking: background 13
203. crinkling: background 103
204. croak: background 339
205. croaking: background 22
206. crumpling: background 63
207. dabbling: background 1
208. deafen: background 1
209. dinging: background 2
210. drooping: background 1
211. explode: background 53
212. fainting: background 1
213. faintly: background 253
214. filing: background 20
215. firing: background 35
216. fizzing: background 1
217. flipping: background 3
218. fumbling: background 1
219. grinding: background 34
220. grunting: background 28
221. gulping: background 2
222. gusting: background 4
223. heaving: background 1
224. hoovering: background 1
225. hovering: background 8
226. humming: background 639
227. jarring: background 1
228. jumble: background 1
229. launching: background 1
230. licking: background 1
231. loudly: background 1828
232. mingle: background 2
233. mix: background 22
234. mixer: background 1
235. noise: background 2529
236. noisily: background 13
237. outburst: background 3
238. popping: background 69
239. pound: background 24
240. puffing: background 2
241. pulsing: background 4
242. rabbiting: background 2
243. ragged: background 2
244. raging: background 1
245. rapping: background 6
246. ratcheting: background 5
247. rattling: background 113
248. reeling: background 1
249. releasing: background 20
250. reloading: background 5
251. revving: background 227
252. rewinding: background 1
253. rhythm: background 18
254. ripping: background 12
255. roaring: background 71
256. rocking: background 1
257. roughly: background 34
258. rumbling: background 72
259. rustling: background 543
260. sanding: background 20
sawing: background 30
scowl: background 1
scrapping: background 9
shaking: background 3
sharpen: background 3
sharpening: background 1
shrill: background 18
slashing: background 1
slightly: background 50
smash: background 6
smashing: background 4
snare: background 3
snarling: background 1
sparking: background 2
splat: background 7
splattering: background 1
spraying: background 70
springing: background 1
spurt: background 4
squeaking: background 61
squealing: background 60
steadily: background 76
stitching: background 7
stretching: background 1
striking: background 2
suction: background 5
swarm: background 40
swishing: background 21
tapping: background 192
thud: background 83
thudding: background 1
thwacking: background 3
tinkling: background 8

References

