ROBUSTNAV: Towards Benchmarking Robustness in Embodied Navigation
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1.1. Overview

This supplementary document is organized as follows.
In Sec. 1.2, we describe in detail the task specifications
for POINTNAV and OBJECTNAV. In Sec. 1.3, we provide
details about the architecture adopted for POINTNAV and
OBIJECTNAV agents and how they are trained. In Sec. 1.4,
we include more plots demonstrating the kinds of behaviors
POINTNAV and OBJECTNAV agents exhibit under corrup-
tions (RGB-D variants in addition to the RGB variants in Sec.
5.2 of the main paper). In Sec. 1.5, we provide more re-
sults demonstrating degradation in performance at severity
set to 3 (for vis corruptions with controllable severity lev-
els; excluded from the main paper due to space constraints)
and break down performance degradation by episode diffi-
culty. We also report degradation in task performance of
POINTNAV agents in the presence of compositions of mul-
tiple vis corruptions and depth noise models. In Sec. 1.6,
we provide more details about the vis and dyn corruptions
present in ROBUSTNAV.

1.2. Task Specifications

We describe the task-specifications (as outlined in Sec.
3 of the main paper) for the ones included in ROBUSTNAV
in detail. Note that while ROBUSTNAV currently supports
navigation heavy tasks, the corruptions included can easily
be extended to other embodied tasks (and associated sim-
ulators) that share the same modalities, for instance, tasks
involving vision and language guided navigation or having
interaction components.

POINTNAV. In POINTNAV, an agent is spawned at a ran-
dom location and orientation in an environment and asked to
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Figure 1. OBJECTNAV Target Objects. We present a few ex-
amples of the target objects considered for OBJECTNAV agents in
ROBOTHOR as viewed from the agent’s ego-centric RGB frame
under successful episode termination conditions.

navigate to goal coordinates specified relative to the agent’s
position. This is equivalent to the agent being equipped with
a GPS+Compass sensor (providing relative location and ori-
entation with respect to the agent’s current position). Note
that the agent does not have access to any “map” of the en-
vironment and must navigate based solely on sensory inputs
from a visual RGB (or RGB-D) and GPS+Compass sensor. An
episode is declared successful if the POINTNAV agent stops
(by “intentionally” invoking an end action) within 0.2m of
the goal location.

OBJECTNAV. In OBJECTNAV, an agent is spawned at
a random location and orientation in an environment as
is asked to navigate to a specified “object” category (e.g,
Television) that exists in the environment. Unlike POINT-
NAv, an OBJECTNAV agent does not have access to a
GPS+Compass sensor and must navigate based solely on
the specified target and visual sensor inputs — RGB (or
RGB-D). An episode is declared successful if the OBJECT-
NAvV agent (1) stops (by “intentionally” invoking an end
action) within 1.0m of the target object and (2) has the tar-
get object within it’s ego-centric view. We consider 12 ob-
ject categories present in the ROBOTHOR scenes for our
OBJECTNAV experiments. These are AlarmClock, Apple,
BaseballBat, BasketBall, Bowl, GarbageCan, HousePlant,
Laptop, Mug, SprayBottle, Television and Vase (see Fig. 1
for a few examples in the agent’s ego-centric frame).

Calibration Budget. Our calibration budget (~ 166k
steps) was decided based on how long it takes an agent to
reasonably recover “lost” performance via supervised fine-
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Figure 2. Agent Architecture. We show the general architecture
adopted for our POINTNAV and OBJECTNAV agents — convolu-
tional units to encode observations followed by recurrent policy
networks. The auxiliary task heads are used when we consider
pre-training or adaptation using PAD [§].

tuning in the corrupt environment. This corresponds to
< 0.3% of the training time for both tasks. In terms of
real-world agent interaction time, following LoCoBot spec-
ifications, the “calibration budget” corresponds to an upper
bound of ~ 2.40 days. We intended to start with a higher
value for the budget, since even supervised fine-tuning takes
significantly long (that too in simulation) to recover lost per-
formance. As navigation agents progressively become bet-
ter and robust, this can be reduced.

1.3. Navigation Agents

We highlight describe the architecture of the agents stud-
ied in ROBUSTNAV and provide additional training details.

Base Architecture. We consider standard neural archi-
tectures (akin to [19, 18]) for both POINTNAV and OB-
JECTNAV- convolutional units to encode observations fol-
lowed by recurrent policy networks to predict action dis-
tributions. Concretely, our agent architecture consists of
four major components — a visual encoder, a goal encoder,
a target observation combiner and a policy network (see
Fig. 2). The visual encoder (for RGB and RGB-D) agents con-
sists of a frozen ResNet-18 [9] encoder (till the last resid-
ual block) pretrained on ImageNet [6], followed by a learn-
able compressor network consisting of two convolutional
layers of kernel size 1, each followed by ReLU activations
(BI2 X T7TxT7T—=128x 7 x7— 32 x 7 x 7). The goal en-
coder encodes the specified target — a goal location in polar
coordinates (r, #) for POINTNAV and the target object token
(e.g., Television) for OBJECTNAV. For POINTNAYV, the goal
is encoded via a linear layer (2 x 32). For OBJECTNAYV, the
goal is encoded via an embedding layer (12 x 32) set to en-
code one of the 12 object categories. The goal embedding
and output of the visual encoder are then concatenated and
further passed through the target observation combiner net-
work consisting of two convolutional layers of kernel size 1
(64 x7x7 =128 x 7T x 7 —= 32 x 7 x 7). The output
of the target observation combiner is flattened and then fed

to the policy network — specifically, to a single layer GRU
(hidden size 512), followed by linear actor and critic heads
used to predict action distributions and value estimates.

Auxiliary Task Heads. In Sec. 5.3 of the main paper, we
investigate if self-supervised approaches, particularly, Pol-
icy Adaptation during Deployment (PAD) [8] help in resist-
ing performance degradation due to vis corruptions. Incor-
porating PAD involves training the vanilla agent architec-
tures (as highlighted before) with self-supervised tasks (for
pre-training as well as adaptation in a corrupt target environ-
ment) — namely, Action Prediction (AP) and Rotation Pre-
diction (RP). In Action-Prediction (AP), given two succes-
sive observations in a trajectory, an auxiliary head is tasked
with predicting the intermediate action and in Rotation-
Prediction (RP), the input observation is rotated by 0°, 90°,
180°, or 270° uniformly at random before feeding to the
agent and an auxiliary head is asked to to predict the rota-
tion bin. For both AP and RP, the auxiliary task heads oper-
ate on the encoded visual observation (as shown in Fig. 2).
To gather samples in the target environment (corrupt or oth-
erwise), we use data collected from trajectories under the
source (clean) pre-trained policy — i.e., the visual encoder
is updated online as observations are encountered under the
pre-trained policy.
Training and Evaluation Details. As mentioned earlier,
we train our agents with DD-PPO [19] (a decentralized, dis-
tributed version of the Proximal Policy Optimization Algo-
rithm [17]) with Generalized Advantage Estimation [16].
We use rollout lengths 7' = 128, 4 epochs of PPO with
1 mini-batch per-epoch. We set the discount factor to
v = 0.99, GAE factor to 7 = 0.95, PPO clip parameter to
0.1, value loss coefficient to 0.5 and clip the gradient norms
at 0.5. We use the the Adam optimizer [ 2] with a learning
rate of 3e — 4 with linear decay. The reward structure used
is as follows — if R = 10.0 denotes the terminal reward ob-
tained at the end of a “successful” episode and A = —0.01
denotes a slack penalty to encourage efficiency, then the re-
ward received by the agent at time-step ¢ can be expressed
as,

e = R. ]Isuccess - AtGeo + \);_/

success reward  reward shaping  Slack reward

where AP is the change in geodesic distance to the goal
and [gyccess indicates where the episode was successful (1)
or not (0). During evaluation, we allow an agent to exe-
cute a maximum of 300 steps — if an agent doesn’t call end
within 300 steps, we forcefully terminate the episode. All
agents are trained under LocoBot calibrated actuation noise
models from [5] — A (0.25m, 0.005m) for translation and
N (30°,0.5°) for rotation. During evaluation, with the ex-
ception of circumstances when Motion Bias (S) is present,
we use the same actuation noise models (in addition to
dyn corruptions when applicable). We train our POINT-
NAV agents for ~ 75M steps and OBJECTNAV agents for



~ 300M steps (both RGB and RGB-D variants).
1.4. Behavior Analysis

In Sec. 5.2 of the main paper, we try to understand
the idiosyncrasies exhibited by the navigation agents under
corruptions. Specifically, we look at the number of colli-
sions as observed through the number of failed actions in
ROBOTHOR, the closest the agent arrives to the target in
an episode and Stop-Fail (Pos) and Stop-Fail (Neg). Since
for both POINTNAV and OBJECTNAV, success depends on
a notion of “intentionality” [2] — the agent calls an end ac-
tion when it believes it has reached the goal — we use both
Stop-Fail (Pos) and Stop-Fail (Neg) to assess how corrup-
tions impact this “stopping” mechanism of the agents. Stop-
Fail (Pos) measures the fraction of times the agent calls an
end action when the goal is not in range', out of the num-
ber of times the agent calls an end action. Stop-Fail (Neg)
measures the fraction of times the agent fails to invoke an
end action when the goal is in range, out of the number of
steps the goal is in range in an episode. Both are averaged
across evaluation episodes. In addition to the above aspects,
we also measure the average distance to the goal at episode
termination. Here we report these measures for POINTNAV
and OBJECTNAV agents trained with RGB and RGB-D sen-
sors in Fig. 3 (RGB-D variants in addition to the RGB agents
in Fig.4 of the main paper).

We find that across RGB and RGB-D variants, (1) agents
tend to collide more often under corruptions (Fig. 3, col 1),
(2) agents generally end up farther from the target at episode
termination under corruptions (Fig. 3, col 2) and (3) agents
tend to be farther from the target under corruptions even in
terms of minimum distance over an episode (Fig. 3, col 3).
We further note that the effect of corruptions on the agent’s
stopping mechanism is more pronounced for OBJECTNAV
as opposed to POINTNAV (Fig. 3, cols 4 & 5).

To further understand the extent to which a worse stop-
ping mechanism impacts the agent’s performance, in Fig. 4,
we compare the agents’ success rate (SR) with a setting
where the agent is equipped with an oracle stopping mech-
anism (forcefully call end when goal is in range). For both
OBJECTNAV RGB and RGB-D, we find that the presence of
vis and vis+dyn corruptions affects success significantly
compared to the clean settings (Fig. 4, black bars).

1.5. Degradation Results

Habitat Challenge Results. We further investigate the de-
gree to which more sophisticated POINTNAV agents, com-
posed of map-based architectures, are susceptible to vis
corruptions. Specifically, we evaluate the performance of
the winning entry of Habitat Challenge (HC) 2020 [I] -

The goal in range criterion for POINTNAV checks whether the target
is within the threshold distance. For OBJECTNAV, this includes a visibility
criterion in addition to taking distance into account.

SRT SPLT Len. SRT SPLT Len.

Noise Free RGB RGBD

(1) Clean 88.90 70.70 240.897 92.50 78.20 185.255
(2) Low-Light. 63.30 32.90 566.286 91.90 75.10 207.994
(3) Spatter 47.50 18.40 728.074 94.80 78.50 181.732
HC Conditions RGB RGBD

(4) HCRGB Noise N/A N/A N/A 6590 49.50 104.167
(5) Low-Light. N/A  N/A N/A  60.50 45.50 107.932
(6) Spatter N/A  N/A N/A  41.60 32.10 110.630

Table 1. OccAnt [15] results on Gibson [20] val. Rows 1-3
are when vis corruptions are introduced over clean settings un-
der noise-free conditions, based on the checkpoint used to report
results in the publication. Rows 4-6 are when RGB noise under
Habitat Challenge (HC) conditions is replaced with the vis cor-
ruptions, based on the HC submission checkpoint. Len indicates
episode length. N/A implies checkpoint not available. Severity for
Low-Lighting and Spatter is set to 5 (worst).

SR+ SPLT SRT SPLT
Corruptions Clean Depth ~ Noisy Depth
(1) Clean 98.54 84.60 8526 59.67

(2) Low Lighting 99.45 84.97 77.89 54.26

(3) Speckle Noise 98.73 84.66 75.07 50.93
Table 2. Depth Corruptions. Degradation in task performance of
pretrained POINTNAV RGB-D (trained for ~ 75M frames) agents
when evaluated in the presence of noisy depth in addition to cor-
rupt RGB observations. Depth noise is based on the redwood depth
noise model from [4] (designed for PrimeSense sensors). Severity
for Low Lighting and Speckle Noise is set to 5 (worst).

POINTNAV RGB RGB-D

Corruptions SRT SPLT SRT SPLT
(1) Clean 08.82 83.13 98.54 84.60
(2) Low Lighting 9436 75.15 99.45 84.97
(3) Motion Blur 95.72 73.37 99.36 85.36

(4) Camera Crack (CC) 82.07 63.83 95.72 81.21

(5) CC + Low Lighting 70.16 51.78 98.18 83.33

(6) CC + Motion Blur ~ 26.02 18.42 9727 8245
Table 3. Corruption Compeositions. Degradation in task perfor-
mance of pretrained POINTNAV (trained for ~ 75M frames) in the
presence of composition of viscorruptions (rows 5 and 6). Sever-
ity of Low Lighting and Motion Blur is set to 5 (worst).

Occupancy Anticipation [15] on the Gibson [20] validation
scenes (see Table. 1). We evaluate the performance of Oc-
cAnt (for RGB and RGB-D; based on provided checkpoints)
when vis corruptions are introduced (1) over clean settings
under noise-free conditions (rows 1-3 in Table. 1) and (2)
by replacing the RGB noise under Habitat Challenge (HC)
conditions (rows 4-6 in Table. 1). Under noise free con-
ditions, we note that degradation in performance from the
clean settings is more pronounced for the RGB agents as op-
posed to the RGB-D variants. Under HC conditions, we note
that the RGB-D variants suffer significant degradation in per-
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Figure 3. Agent Behavior Analysis. To understand agent behaviors, we report the breakdown of four metrics: Number of collisions as
observed through Failed Action (first column), distance to target at episode termination as measured by Term. Dist. to Target

(second column), closest agent was to target as measured by Min.

Dist. to Target (third column), and failure to appropriately end

an episode either when out of range — Stop-Fail (Pos) (fourth column), or in range — Stop-Fail (Neg) (fifth column). Each behavior
is reported for both POINTNAV (RGB-first row, RGBD-second row) and OBJECTNAV (RGB-third row, RGBD-fourth row) within a clean and
five corrupt settings: Defocus Blur (D.B.), Speckle Noise (S.N.), Motion Drift (M.D.), Defocus Blur + Motion Drift, and Speckle Noise

+ Motion Drift. |l is clean, ] is vis corruptions,

is dyn corruptions and [ is vis+dyn corruptions. Blue lines in column 2 and 3

indicate the distance threshold for goal in range. Severities for S.N. and D.B. are set to 5 (worst).
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Figure 4. Effect of Degraded Stopping Mechanism. To under-
stand the extent to which a degraded stopping mechanism under
corruptions affects OBJECTNAV RGB agent performance, we look
the difference between the agent’s success rate (SR) compared to
the setting where the agent is equipped with an oracle stopping
mechanism. SRo; denotes success rate when an end action is
forcefully called in an episode whenever the goal is in range. We
consider one clean and five corrupt settings: Defocus Blur (D.B.),
Speckle Noise (S.N.), Motion Drift (M.D.), Defocus Blur + Mo-
tion Drift, and Speckle Noise + Motion Drift. [l is clean, is
vis corruptions, is dyn corruptions and il is vis+dyn corrup-
tions. Severities for S.N. and D.B. are set to 5 (worst).

formance when RGB noise is replaced with vis corruptions.

Depth Corruptions. We believe modeling corruptions in
depth is not as trivial as modeling corruptions in the RGB
observations. For instance, it’s unclear how motion blur
(due to fast, jittery movements) affects depth observations.
Given this, and the fact that we intend to factorize the contri-
butions of the depth and RGB sensors under corruptions, we
decided to solely rely on RGB corruptions as a starting step.

More sophisticated depth corruptions — such as Redwood,
SimKinect, etc. — will be incorporated in future versions of
ROBUSTNAV. As an anecdotal point of reference, we re-
port the performance of trained POINTNAV RGB-D agents in
presence of the redwood depth noise model [4] (for Prime-
Sense derived sensors), in Table. 2.

Corruption Compositions. ROBUSTNAV is not restricted
to having at most one vis, and / or one dyn corruption(s)
in the target environment — it can support a composition of
multiple corruptions as well. In Table. 3, we report the per-
formance of POINTNAV agents under a subset of such vis
compositions. We restrict ourselves to individual corrup-
tions in the main paper to factorize the effect of each cor-
ruption on navigation performance.

More Degradation Results. In Table. 4, we report the
degradation in performance (relative to clean settings) of
POINTNAV and OBJECTNAV agents when operating under
vis, dyn and vis+dyn corruptions. We report mean and
standard error values across 3 evaluation runs under actua-
tion noise (wherever applicable). For vis corruptions with
controllable severity levels — Motion Blur, Low-Lighting,
Defocus Blur, Speckle Noise and Spatter — we report re-
sults with severities set to 3 and 5 (identified by S3 and S5;
excluded from the main paper due to space constraints) —
for both vis and vis+dyn settings. We note that unlike
the RGB-D variants, for POINTNAV RGB agents, performance
drops more as severity levels increase (increasing degrada-



POINTNAV OBJECTNAV
RGB RGB-D RGB RGB-D

# Corruption | V D SR SPL 1 SR SPL 1 SR SPL 1 SR SPL 1

1 Clean 98.97 015 83.45+027 99.24 4015 85.00+025 31.78 081 14.50+047 3543408 17.57 x05
2 Low Lighlil‘lg (S3) v 9745402 80.53+03: 99.09+017  84.91 026 21.55+0m2  8.91+03s 27.55+07  13.08+047
3 Low Lighting (SS) v 93424003 74.881043 99.271015  85.04 2025 11.69=056 4.902030 23.26+07  10.61x04
4 Motion Blur (33) v 98.824019  80.64+020 98.91 4015 84.62+026 18.57 08 8.18x037 24324075 11.52404
5 Motion Blur (SS) v 96.15+05  73.24x05 99.06+017  85.01 025 10.50£005 4. 71105 18.2640s3  7.87x04s

6 Camera Crack v 81.56+06s 63.48+05 96.00+03  81.48:+03 7.06+0ss  3.54+02 27.28+07  13.49+04s
7 Defocus Blur (S3) v 94.63 403  73.28x0m 98.79+019  84.47 x026 15.591065  6.991036 22.07+072  9.75x0m

8 Defocus Blur (S5) v 75.834075  53.48105 99.031017  85.44 1025 4201035 1.81 2020 17.661067  7.47 1036
9 Speckle Noise (S3) v 89.23405:  68.18+053 98.85+019  84.58+027 14.92:002  6.541034 24.05+075  10.34 5042
10 Speckle Noise (SS) v 66.70+052 4792106 98.97 +01s  84.79+026 8.68+040 390028 17.69+067 7424036
1 Lower-FOV v 43252086 32.39+068 89.44 1054 73.92:050 101705 2.50+019 10.02+052 4.89x0a1

12 Spatter (S3) v 38.40+085  25.53+05 98.64+020 84.00+02 7.06+04s 3.81+02 2320407 9.71+040
13 Spatter (S5) v 34.641085  25.55106 99.30+014  84.68+025 7.79+047 271402 2143102 9.98100

14 Motion Bias (S) v 95.69+055  77.05x03 96.60+05  79.22+035 3321508 14.88104 34.9810s  16.70x0s1
15 Motion Drift v 95.94 05 76.32+035 93.57 +045  75.09x040 28.55+0m  13.30+046 34374053 16.43 1050
16 Motion Bias (C) v 92.27 047 77.48x046 9311204 79.04 x045 3047050 13.204045 32724052 15.67 x0s50
17 PyRObO[ [ ] (ILQR) Mul. = 1.0 v 95184037 67.45+03 96.18+033  69.48+035 3254408 11.65+03 36.86408  14.24104s
18 Motor Failure v 20.84+0m  17.91 00 21.4150m  18.39+00 4.60 403 2.88+026 6.06042 3.65+02s

19 Defocus Blur (53) + Motion Bias (S) v v 92.724045  68.61+04 9745402 79.70+02 14401061 6.1503 2240407 9.20403

20 Defocus Blur (S5) + Motion Bias (S) v v 75.80+075  50.76:+058 97.00+030 79.81+03: 5.66+040  2.34102 17.53x066  7.07+035

21 Speckle Noise (S3) + Motion Bias (S) v v 86.62+050  63.20+054 96.85+030  79.23+04 14.924060 631203 24724075 10.04 104
22 Speckle Noise (S5) + Motion Bias (S) v v 64.36+083  44.38+06 96.78 4031 79.49+04 8954050  3.85102 18.394068  7.49+036
23 Spatter (53) + Motion Bias (S) v v 3725408 23.83 1057 96.60+032  78.62+035 7184045 3.60+028 2444075 9.80+040
24 Spaner (S5) + Motion Bias (S) v v 33.85108  23.98106 95.941034  78.64x036 7.64 1046 2.9310m 2091+0m  9.391040
25 Defocus Blur (53) + Motion Drift v v 89.721053  65.84 1047 94.841039  75.97 203 14.162061 6.26103 23.56107  10.65104
26 Defocus Blur (S5) + Motion Drift v v 73.92+07  50.84+0s0 9472403 76.21 403 4.57+036  2.10+021 17.26+066  7.04+035

27 Speckle Noise (S3) + Motion Drift v v 86.65+050 62.44 1053 93.994041 75.02+05 13.46+000 5.95+03 23.01 407 9.96+041

28 Speckle Noise (S5) + Motion Drift v v 63.18105s  43.29+065 9451040  75.34 03 7.49+050  3.63+046 18.93+06s  7.85x036
29 Spatler (S3) + Motion Drift v v 377008 24.27 x0s57 94.57 030 75.34+03s 715045 3.59 02 234407 9.724040
30 Spatter (S5) + Motion Drift v v 33.36+082  23.59+060 95.03103  75.84203 T21x0ss  2.77+0s 18.69+06s  8.37+03s

31 Defocus Blur (S3) + PyRobot [14] ILQR) Mul. =10 vV 93.99+041 58.88:+040 97.66+026  70.54 103 16.13406  5.2202 22.68+07  7.3310n

32 Defocus Blur (SS) + PyRObOl [ ] (ILQR) Mul. = 1.0 v v 79.34c0m  42.29+040 97244029  70.35+03 5.81 4041 1.04+01 18.48+06s  5.86402

33 Speckle Noise (53) + PyRDbOt [ ] (ILQR) Mul. =10 VvV v 88.381056  54.60-040 96.121034  68.67 035 14.95100 471102 24.11+075 7.5110n

34 Speckle Noise (S5) + PyRobot [14] ALQR) Mul. =10 vV 67.12+082  37. 774057 96.36+03  69.44 103 8.89+050  2.66+02 18.72+06s  5.73+029

35 Spatter (S3) + PyRobot [14] (ILQR) Mul. = 1.0 v v 40.70+08s  18.26+045 96.09+03:  68.25+036 8.3 11048 1.76+0.16 23.17x0m  7.76x05

36 Spatter (S5) + PyRobot [14] (ILQR) Mul. = 1.0 v v 36.37+0s  19.70+051 96.03+03  68.98+03 8.58+04  2.09x017 20854071  7.41x03

Table 4. POINTNAV and OBJECTNAV Performance. Degradation in task performance of pretrained POINTNAV (trained for ~ 75M
frames) and OBJECTNAV (trained for ~ 300M frames) agents when evaluated under vis and dyn corruptions present in ROBUSTNAV.
POINTNAV agents have additional access to a GPS-Compass sensor. For visual corruptions with controllable severity levels, we report
results with severity set to 5 and 3. Performance is measured across tasks of varying difficulties (easy, medium and hard). Reported results
are mean and standard error across 3 evaluation runs with different seeds. Rows are sorted based on SPL values for RGB POINTNAvV
agents. Success and SPL values are reported as percentages. (V = Visual, D = Dynamics)

tion from severity 3 —5). For OBJECTNAV, we find that
for both RGB and RGB-D variants, performance decreases as
with increasing severity of corruptions (3 — 5).

Performance Breakdown by Episode Difficulty. In Ta-
bles. 5 and 6 we break down performance of POINTNAV
and OBJECTNAYV agents by difficulty of evaluation episodes
(based on shortest path lengths). We report results for a
subset of vis, dyn and vis+dyn corruptions (mean across
3 evaluation runs under noisy actuations, wherever appli-
cable). For POINTNAV RGB agents, we find that while
performance is comparable across easy, medium and hard
episodes under clean settings, under corruptions, navi-
gation performance decreases significantly with increase
in episode difficulty — indicating that under corruptions,
POINTNAV-RGB agents are more successful at reaching goal
locations closer to the spawn location. However, this is not
the case for POINTNAV RGB-D agents, where the drop in
performance with increasing episode difficulty is much less

pronounced. For OBJECTNAV-RGB agents, we observe that
performance (in terms of SR and SPL) drops as episodes be-
come more difficult. For OBJECTNAV-RGB-D agents, al-
though we find comparable SPL across episode difficulties
in some cases, the trends are mostly the same — decreas-
ing performance (in terms of SR and SPL) with increasing
episode difficulty.

1.6. Visual and Dynamics Corruptions

ROBUSTNAYV intends to be a stepping stone towards the
larger goal of developing deployable robust agents. Our
contribution in this work is to highlight the lack of robust-
ness in existing navigation agents via an accessible bench-
mark that can continually evolve to integrate more sophis-
ticated corruptions (so as to rigorously study this aspect).
Our vis corruptions are based on common scenarios an
agent might encounter in the real world (partly inspired



Increasing Episode Difficulty — Easy Medium Hard

Corruption | SR SPLT SR SPLT SRT SPLT
POINTNAV-RGB

1 Clean 99.64 +0.18 82.80+0.38 99.36+0.24 84.21+047 97.91+043 83.34 4054
2 Low Lighting 99.3640.24 80.59+0.45 95.54 +0.62 75.83+0.70 85.34+1.07 68.22+0.94
3 Camera Crack 94.10=+0.71 75.81+0.70 80.05+1.21 62.15+1.06 70.49+1.38 52.44+1.14
4 Spatter 74934131 57.85+1.08 18.67+1.18 12.03+0.80 10.20+091 6.69+0.63
5 Speckle Noise + Motion Bias (S) 86.74+£1.02 60.86+0.96 61.11+1.47 41.30+1.15 45.17+1.50 30.93+1.11
6 Spatter + Motion Bias (S) 72.48+135 53.25+1.08 18.85+1.18 11.99+0.79 10.11 %001 6.63+062
7 Speckle Noise + Motion Drift 88.74+0.95 63.57+0.89 59.47 +1.48 38.75+111 41.26+1.49 27.50+1.07
8 Spatter + Motion Drift 73214134 54.16+1.06 17.12+1.14 10.50+0.74 9.65+0.89 6.04+0.58
POINTNAV-RGBD

9 Clean 99.55+0.20 82.36+041 99.45+0.22 85.38+047 98.72+034 87.27+0.40
10 Low Lighting 99.55+0.20 82.25+042  99.36+0.24 86.15+043 98.91+031 86.73+0.41
11 Camera Crack 99.27 +0.26 81.79+043 97.18+0.50 83.19+059 91.53+084 79.45+0.80
12 Spatter 99.82+0.13 82.40+040  99.09+0.29 84.69+048  99.00+0.30 86.96+0.41
13 Speckle Noise + Motion Bias (S) 96.28 +0.57 75.59+062 97.27 +0.49 80.77+o0s6 96.81+053 82.11+055
14 Spatter + Motion Bias (S) 96.46+0.56 76.02+0.62 94.99 +0.66 78.61+067 96.36+0.57 81.29+0.59
15 Speckle Noise + Motion Drift 99.27+026  77.85+041 96.17+0s58  76.77+0.61 88.07+0.98 71.39+0.6
16 Spatter + Motion Drift 99.18+027  77.24+044 97364048  78.42+0s53  88.52+096  71.87+o0ss

Table 5. Breakdown of POINTNAV Performance Degradation by Episode Difficulty. Degradation in task performance of pre-trained
POINTNAV RGB and RGB-D agents (trained for ~75M frames) for episodes of varying difficulties (based on shortest path lengths) when
evaluated under vis and dyn corruptions present in ROBUSTNAV. For visual corruptions with controllable severity levels, severity is set
to 5 (worst). Reported results are mean and standard error across 3 evaluation runs under noisy actuations (wherever applicable). Success
and SPL values are reported as percentages.

from [10]) — ranging from additive noise, external/internal
artifacts to effects of motion. These are implemented us-
ing open-sourced packages such as wand, open-cv & scipy.
Speckle noise is implemented as per-pixel additive gaus-
sian noise where the noise added is proportional to the pixel
intensity in the ego-centric RGB frame. Motion-blur is im-
plemented as a gaussian blur operation along a linear direc-
tion to simulate a motion effect. Spatter is implemented by
overlaying occlusions (water droplets or particles on lens;
distributed based on severity levels) on the ego-centric RGB
frame. Defocus Blur is implemented via a gaussian blur
filter to make objects in the ego-centric RGB frame out-of-
focus. Low Lighting is implemented by first converting the
RGB frame to the HSV color space and then modulating the
intensities in the value channel. Camera-crack is the result
of overlaying crack images over frame. Our dyn corrup-
tions are motivated from and in line with well-known sys-
tematic and/or stochastic drifts (due to error accumulation)
and biases in robot motion [13, 3, 7]. To periodically up-
date the benchmark, we intend to conduct experiments akin
to [1 1] to continually assess the Sim-2-Real predictivity of
navigation performance under corruptions. For more details
about the vis and dyn corruptions, please refer to our code
athttps://github.com/allenai/robustnav.



Increasing Episode Difficulty — Easy Medium Hard

Corruption | SRT SPLY SRt SPLY SRt SPL?T
OBJECTNAV-RGB

1 Clean 40.50+1.94 12.43+1.04 33.48+1.29 15.51+073 25.75+121 14.49+075
2 Low Lighting 22.59+165 8.50+0.96 13.23+093 5.60+0.46 4.75+0.59 2.40+033
3 Camera Crack 21.65+1.63 10.10+1.05 5.38+0.62 2.72+034 1.61+035 1.15+026
4 Spatter 21.18+1.61 6.39+0.18 6.65+0.68 2.66+0.32 2.38+042 0.95+0.18
5 Speckle Noise + Motion Bias (S) 20.56+1.60 7.01+035 9.79+0s1 4.89+047 2.38+042 1.23+023
6 Spatter + Motion Bias (S) 20.56+1.60 6.71+0s3 7.32+071 3.35+038 1.61+03s 0.65+0.15
7 Speckle Noise + Motion Drift 18.69+2.67 8.55+1.59 7.62+1.26 3.86+0.74 1.84+0.64 0.97+0.36
8 Spatter + Motion Drift 21.50+1.99 7.08+1.01 6.84+035 3.18+045 0.57+0.26 0.23+0.11
OBJECTNAV-RGBD

9 Clean 46.73+1.97 15224115 35.72+131 18.09+0.80 29.58+1.26 18.18+0.86
10 Low Lighting 28.82+1.79 10.55+104 25414119 11.56+0.68 18.31+107 9.68+0.65
11 Camera Crack 35.51+189 11.53+1.03 28.03+1.23 13.90+073 22.45+1.16 14.03+0.79
12 Spatter 29.75+181 9.794099 18.76+1.07 9.06+0.62 20.08+1.11 11.00+0.67
13 Speckle Noise + Motion Bias (S) 22.12+1.64 5.93+080 18.54+1.06 8.29+058 16.40+1.03 7.43+054
14 Spatter + Motion Bias (S) 27.26+176 8.66+092 19.81+1.09 8.81+0.60 18.93+1.08 10.35+0.66
15 Speckle Noise + Motion Drift 2274+ 166 6.35+084 19.13+1.08 7.86+0.6 16.86+1.04 8.56+0.59
16 Spatter + Motion Drift 25.08+1.71 8.16+0.89 17.79+1.05 8.16+057 16.48+1.03 8.69+0.60

Table 6. Breakdown of OBJECTNAV Performance Degradation by Episode Difficulty. Degradation in task performance of pre-trained
OBJECTNAV RGB and RGB-D agents (trained for ~300M frames) for episodes of varying difficulties (based on shortest path lengths)
when evaluated under vis and dyn corruptions present in ROBUSTNAV. For visual corruptions with controllable severity levels, severity
is set to 5 (worst). Reported results are mean and standard error across 3 evaluation runs under noisy actuations (wherever applicable).
Success and SPL values are reported as percentages.
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