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Algorithm 1 Training procedure of STEAM for DG task
1: Input: Labeled source training domains D = {Dd}Dd=1. Initialize

encoders Ef (·,θe,f ), Ec(·,θe,c) and Es(·,θe,s); memory
encoders Em,f (·,θm,f ), Em,c(·,θm,c) and Em,s(·,θm,s);
classifier C(·,φ); domain-specific style memory bank
V s=(V s

1, ...,V
s
d, ...,V

s
D , d ∈ [1, D]) and semantic memory

bank V c. Functions enqueue and dequeue.
2: for n = 1 to N do
3: Sample mini-batches of the training data (xd,i, yd,i) and their cor-

responding “variant” (x+
d,i, yd,i) # See main texts below for de-

scription.
4: sd,i = Es(Ef (xd,i,θe,f ),θe,s)
5: cd,i = Ec(Ef (xd,i,θe,f ),θe,c)

6: s̄d,i = Em,s(Em,f (x+
d,i,θm,f ),θm,s)

7: c̄+d,i = Em,c(Em,f (x+
d,i,θm,f ),θm,c)

8: Compute Lcls on (C(cd,i,φ), yd,i) using Eq. (5)
9: Compute Ls on (sd,i,V

s) using Eq. (1)
10: Compute Lc on (cd,i, c̄

+
d,i,V

c) using Eq. (4)
11: Compute Lo on (cd,i, sd,i) using Eq. (6)
12: enqueue(V s, s̄d,i), enqueue(V c, c̄+d,i)

13: dequeue(V s), dequeue(V c)
14: Update the encoder parameters θe,f , θe,c, θe,s and classifier pa-

rameters φ with SGD by minimizing the total loss in Eq. (7)
15: Momentum update the memory encoder parameters, θm,f , θm,c,

θm,s using Eq. (8)
16: end for

The supplementary material contains: 1) pseudocode of
our STEAM [1], 2) analysis of the learned style feature and
3) visualization of semantic feature distributions.

1. Pseudocode of STEAM

The pseudocode of STEAM for domain generalization
(DG) and multi-source domain adaptation (MSDA) are re-
spectively presented in Algorithm 1 and Algorithm 2. To fa-
cilitate mini-batch training, x+

d,i in DG (Algorithm 1) is ran-
domly chosen from all possible domains that either is from
the same class of xd,i, or simply is selected from the aug-
mentation pool (RandAug [2]) of xd,i. In regard of MSDA
(Algorithm 2), for labeled source domains, x+

d,i is randomly
chosen from all possible source domains that either is from

Algorithm 2 Training procedure of STEAM for MSDA task
1: Input: Labeled source training domains D = {Dd}Dd=1 and unla-

beled target domain Dt. Initialize encoders Ef (·,θe,f ), Ec(·,θe,c)
and Es(·,θe,s); memory encoders Em,f (·,θm,f ), Em,c(·,θm,c)
and Em,s(·,θm,s); classifier C(·,φ); domain-specific style mem-
ory bank V s=(V s

1, ...,V
s
d, ...,V

s
D,V s

Dt
, d ∈ [1, D]) and semantic

memory bank V c. Functions enqueue and dequeue.
2: for n = 1 to N do
3: Sample mini-batches of the training data (xd,i, yd,i) and their cor-

responding “variant” (x+
d,i, yd,i) # See main texts below for de-

scription.
4: sd,i = Es(Ef (xd,i,θe,f ),θe,s)
5: cd,i = Ec(Ef (xd,i,θe,f ),θe,c)

6: s̄d,i = Em,s(Em,f (x+
d,i,θm,f ),θm,s)

7: c̄+d,i = Em,c(Em,f (x+
d,i,θm,f ),θm,c)

8: Compute Lcls on (C(cd,i,φ), yd,i) using Eq. (5) # Lcls are only
applied on labeled source samples.

9: Compute Ls on (sd,i,V
s) using Eq. (1)

10: Compute Lc on (cd,i, c̄
+
d,i,V

c) using Eq. (4)
11: Compute Lo on (cd,i, sd,i) using Eq. (6)
12: enqueue(V s, s̄d,i), enqueue(V c, c̄+d,i)

13: dequeue(V s), dequeue(V c)
14: Update the encoder parameters θe,f , θe,c, θe,s and classifier pa-

rameters φ with SGD by minimizing the total loss in Eq. (7)
15: Momentum update the memory encoder parameters, θm,f , θm,c,

θm,s using Eq. (8)
16: end for

the SAME class of xd,i, or simply is selected from the aug-
mentation pool of xd,i. For unlabeled target domain, x+

d,i is
only selected from the augmentation pool of xd,i.

2. More Ablation Studies

The ablation study in the main paper (Sec. 4.3) does not
separate the Ls and Lo. Without the term Lo, we would
lose the only coupling constraint between style and seman-
tic features. In this case, semantic features will indepen-
dently encode each input sample without being constrained
by style assumptions Ls. Correspondingly, any invariance
on domain-specific style features forced through loss Ls

will be blocked without even reaching the semantic fea-



Table 1. Ablation on PACS for domain generaliztion. A, C, P, and
S indicates Art, Cartoon, Photo, and Sketch, respectively.

Lcls Ls Lo Lc A C P S Avg.
√

77.0 75.9 96.1 69.2 79.5
√ √

77.1 75.8 95.7 68.8 79.3
√ √

76.5 75.3 95.9 68.9 79.1

tures, unless orthogonality constraint Lo is present. Cer-
tainly, Lo alone without Ls would not impose any constraint
on semantic features, too. As shown in Table 1, Lcls + Ls

and Lcls +Lo respectively returns average scores of 79.3%
and 79.1% on PACS, similar to vanilla model Lcls (79.5%).

3. Style Feature Analysis
In this section, we justify STEAM’s effectiveness on

achieving the intra-domain style feature invariance as de-
scribed in Sec 3.2. We train the network for DG task by us-
ing STEAM on PACS dataset, and we examine the similar-
ity distributions of intra-domain and inter-domain instance
style features (extracted from feature extractor Ef and style
encoder Es) using all training data. Specifically, we cal-
culate the similarity score of any two samples belonging to
the same domain or from different domains. We display the
distributional histograms of style features by respectively
using the blue color (inter-domain style feature similarity)
and red color (intra-domain style feature similarity).

We observe that, under the STEAM training scheme, the
style similarities of samples belong to the same domain (the
“red” part in Fig.1) are indeed much higher than those of
samples belonging to different domains (the “blue” part in
Fig.1). This validates that our proposed losses are able
to achieve the assumed intra-domain style invariance via
domain-specific style memory banks construction, and can
indeed capture the domain-specific style features.

4. Semantic Feature Visualization
In Fig.2, we visualize semantic features respectively

learned by Vanilla model (Fig.2 (a)(c)) and our STEAM
(feature extracted by feature extractor Ef and semantic en-
coder Ec, illustrated in Fig.2 (b)(d)) using t-SNE [3]. Here
the source data is from PACS dataset, and the unseen tar-
get domain is sketch. Both of the source domain and target
domain data are present in all subfigures of Fig.2. Specifi-
cally, in Fig.2 (a) and (b), different colors indicate different
classes for Vanilla and STEAM; in (c) and (d), different col-
ors represent different domains for Vanilla and STEAM.

When comparing Fig.2 (a) and (b), STEAM model obvi-
ously leads to a better class separation than Vanilla model,
by well preserving the sharpened class boundaries. This
implies that STEAM has captured better discriminativeness

Figure 1. Qualitatively analysis of the style feature histograms
learned by our STEAM. See main texts for description.
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Figure 2. The t-SNE visualization of extracted semantic features
out of Vanilla model (a) and (c), and features out of our proposed
STEAM (b) and (d). Training source data is PACS dataset. The
target domain is sketch. In (a) and (b), different colors indicate
different classes; in (c) and (d), different colors represent different
domains. See main texts for description.

on semantic features regarding the final classification task.
Also, Fig.2 (c)(d) show that STEAM achieves a much bet-
ter semantic feature alignment among all source and target
domains than Vanilla model, even if the target data is un-
seen under the domain generalization (DG) setting. In com-
parison, the Vanilla model could hardly achieve any feature
alignment between source and target domain, where test
data semantic features are shown to be locating remotely
from training domains (Fig.2 (c)). These t-SNE illustrations
qualitatively demonstrate that our assumption of “instance
level intra-domain style invariance” and the proposed “jury”



mechanism on learning “domain-agnostic” semantic fea-
tures can indeed effectively disentangle semantic features
from style features, thus leading to a better generalization
performance than the state-of-the-art methods.
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