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Appendix
In the supplemental material, we firstly visualize the dis-

tributions of the corrupted samples, adversarial samples,
and OOD samples in the frequency domain to validate the
Assumption 2 in the main text in Section A. Then, sev-
eral typical templates of the phase spectrum are shown in
Section B to intuitionally explain the rationality of the pro-
posed APR method, and the implementation details of the
data augmentation of APR-S are listed in Section C. In Sec-
tion D, the Fourier analysis is provided to demonstrate the
various gains from APR-P and APR-S, and the clean error
analysis and OOD detection on ImageNet are also listed to
clarify the excellent scalability of our method.
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Figure 1. The T-SNE [11] visualization of the different types of
the amplitude spectrum. Red represents the original image or in-
distribution (ID) samples in CIFAR-10, and gray represents Cor-
rupted Samples (CS), the samples generated by Adversarial At-
tacks (AA) from CIFAR-10, or OOD samples from CIFAR-100.

A. More Studies on the Frequency Domain.
Here, we show more studies of the different types of

the amplitude spectrum. For all samples in CIFAR, we
generate the low-frequency, intermediate-frequency and
high-frequency counterparts with r for non-zero parts set
to [0, 8], [8, 16] and [16, 16

√
2], respectively. In Fig-

ure 1, we show the amplitude spectrum distributions of
low-frequency, intermediate-frequency, and high-frequency
from original samples, their corrupted samples, adversarial
samples, and OOD samples respectively.

Firstly, for corrupted samples and adversarial sam-
ples from a single category, we could observe that their
amplitude spectrum in high-frequency and intermediate-
frequency has different distribution with the original sam-
ples even if only invisible noises are introduced. More-
over, the amplitude spectrums in low-frequency of cor-
rupted samples and adversarial samples are indistinguish-
able from the original images. It also explains that CNN
captures the high-frequency image components for classifi-
cation [12]. Hence, CNN would make a wrong prediction
for ’similar’ images (corruption and adversarial samples)
when the parts of the amplitude spectrum are changed.

Then, for the OOD samples from CIFAR-100, it is
evident that any type of the amplitude spectrum of in-
distribution and out-of-distribution could be not able to dis-
tinguish. CNN focusing on the amplitude spectrum has a
huge risk that any OOD sample with a similar amplitude
part of in-distribution samples would be classified as an in-
distribution sample. Hence, CNN would be overconfident
for some out-of-distributions when similar amplitude infor-
mation appears.

Overall, the above analyses explain our Assumption 2
in the main text, that the counter-intuitive behaviors of the
sensitivity to common perturbations and the overconfidence
of OOD maybe both be related to CNN’s over-dependence
on the amplitude spectrum. We do not focus on the high fre-
quency only, because the OOD samples may come from the
similarity of any amplitude part as shown in Figure 1. As a
result, the focusing of some parts of the amplitude spectrum
may create an invisible way to attack CNN, such as the ad-
versarial attack and various corruptions (Corollary 1), and
the amplitude attack or OOD attack (Corollary 2).
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Figure 2. Fourier transform can be interpreted as dividing an image
with 4×N2 templates for contrast computation.

B. Templates from the Phase Spectrum
To better reveal the role of the phase spectrum, we ana-

lyze the phase spectrum in the different frequency domains.
When DFT is applied on a gray image, there are totally
4 ×N2 templates which are used to compute 2 ×N2 con-
trast scores (as shown in Figure 2). Consequently, the fre-
quency spectrum stores contrast values obtained at multiple
scales and directions. The classification or other visual tasks
could benefit from capturing the difference between targets
and distractors by these templates. The templates of the
lowest frequencies divide images into large regions, which
are ”coarse” partitions. Then, the templates of the high-
est frequencies provide ”fine” partitions that achieve only
high responses to noises and textures. In addition, the tem-
plates of the intermediate frequencies provide ”moderate”
partitions which may include the target object, and it has
also been proved that it’s beneficial for fixation prediction
in [6]. These templates in the phase spectrum could help
to recover the structural information of the original image
even without the original amplitude spectrum [8]. The ro-
bustness human visual system can also rely on this visible
structured information for recognition [8, 7].

C. Augmentation Operations
The augmentation operations used in APR-S are same

with [4] as shown in Figure 3. We do not use contrast, color,
brightness, sharpness and Cutout as they may overlap with
the corruptions of CIFAR-C and ImageNet-C.
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Figure 3. Illustration of augmentation operations applied to the
same image.

D. Additional Results

D.1. Fourier Analysis

In order to better understand the reliance of our methods
on different frequencies, here we measure the model sensi-
tivity to the additive noise at differing frequencies. We add
a total of 33× 33 Fourier basis vector to the CIFAR-10 test
set, one at a time, and record the resulting error rate after
adding each Fourier basis vector. Each point in the 33× 33
sensitivity heatmap shows the error rate on the CIFAR-10
test set after it has been perturbed by a single Fourier basis
vector. Points corresponding to the low-frequency vectors
are shown in the center of the heatmap, whereas the high-
frequency vectors are farther than the center.

In Figure 4, we observe that the standard model is ro-
bust to the low-frequency perturbations but severely lacks
robustness to the high-frequency perturbations, where the
error rates exceed 80%. Then, the model trained by APR-
P is more robust to all frequencies, especially to the low
and intermediate frequencies. Moreover, the model trained
by APR-S maintains robustness to low-frequency perturba-
tions and improves robustness to the high-frequency per-
turbations, but is still sensitive to the additive noise in the
intermediate frequencies. This further explains the exper-
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Figure 4. Model (Wide ResNet) sensitivity to the additive noise aligned with different Fourier basis vectors on CIFAR-10 validation images.
We fix the additive noise to have L2 norm 15 and evaluate four methods: a standard trained model, APR-P, APR-S, APR-SP. Error rates
are averaged over 1000 randomly sampled images from the test set. The standard trained model is highly sensitive to the additive noise in
all but the lowest frequencies. APR-SP could substantially improve robustness to most frequency perturbations.

Table 1. CIFAR-10 Clean Error. All values are percentages and the best results are indicated in bold.
Standard Cutout Mixup CutMix AutoAugment Adv Training AugMix APR-P APR-S APR-SP

CIFAR-10-C

AllConvNet 6.1 6.1 6.3 6.4 6.6 18.9 6.5 5.5 6.5 5.7
DenseNet 5.8 4.8 5.5 5.3 4.8 17.9 4.9 5.0 5.1 4.8
WideResNet 5.2 4.4 4.9 4.6 4.8 17.1 4.9 4.8 5.0 4.3
ResNeXt 4.3 4.4 4.2 3.9 3.8 15.4 4.2 4.5 4.5 3.9

Mean 5.4 4.9 5.2 5.0 5.0 17.3 5.1 5.0 5.2 4.7

Table 2. OOD performance of different methods on the larger and
more difficult datasets, where ImageNet-1K is the in-distribution
dataset and ImageNet-O is the OOD dataset.

Method AUROC OSCR

Standard 40.9 36.8
APR-SP 62.3 53.2

iments in Section 5.1.2 (main text) that APR-P improves
performances of both OOD detection and defense adversar-
ial attacks tasks. From Appendix A, the adversarial samples
are more different from original samples in intermediate and
high frequencies, while the OOD samples may share simi-
larities with the original samples in any frequencies. The
gains of APR-P and APR-S to different frequency domains
bring the gains to different tasks.

Furthermore, APR-SP (combining APR-S and APR-P)
could substantially improve robustness to most frequency
perturbations. The weak sensitivity to the intermediate fre-
quencies is reasonable because of the gains for target pre-
diction from intermediate frequencies in Appendix B.

D.2. Clean Error

Table 1 reports clean error [4] of CIFAR-10 by differ-
ent methods, and the proposed method achieves the best
performances on various backbone networks. APR-SP not
only improves the model adaptability to the common cor-
ruptions, surface variations and OOD detection, but also
improves the classification accuracy of the clean images.

D.3. OOD Detection on ImageNet.

We conduct OOD experiments on the larger and more
difficult ImageNet-1K dataset [9]. ImageNet-O [5] is
adopted as the out-of-distribution dataset of ImageNet-1K.
ImageNet-O includes 2K examples from ImageNet-22K
[9] excluding ImageNet-1K. The ResNet 50 [3] is trained
on ImageNet-1K and tested on both ImageNet-1K and
ImageNet-O.

In order to evaluate the accuracy of in-distribution and
the ability of OOD detection simultaneously, we introduce
Open Set Classification Rate (OSCR) [2, 1] as an evaluation
metric. Let δ is a score threshold. The Correct Classifica-
tion Rate (CCR) is the fraction of the samples where the
correct class k has maximum probability and has a proba-
bility greater than δ:

CCR(δ) =
|{x ∈ Dk

I ∧ argmaxkP (k|x) = k̂ ∧ P (k̂|x) ≥ δ}
|Dk

I |
.

(A.1)
where Dk

I is the interest in-distribution classes that the neu-
ral network shall identify. The False Positive Rate (FPR) is
the fraction of samples from OOD data DO that are classi-
fied as any in-distribution class k with a probability greater
than δ:

FPR(δ) =
|{x|x ∈ DO ∧maxkP (k|x) ≥ δ}|

|DO| . (A.2)

A larger value of OSCR indicates a better detection perfor-
mance. As shown in Table 2, APR-SP performs better than
the standard augmentations even on the large and difficult



dataset. Especially, APR-SP achieves about 22% improve-
ment on AUROC. From the OSCR, APR-SP improves the
performances of the OOD detection while maintaining test
accuracy. These results indicate the excellent scalability of
APR in larger-scale datasets.

D.4. More CAM Visualization Examples

We also list more visualization examples with various
corruptions in Figure 5 and 6, the CNN trained by APR-SP
is able to focus on the target objects for classification even
with different common corruptions and surface variations.
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Figure 5. The Gradient-weighted Class Activation Mapping [10] of the baseline (the third column in each panel) and the proposed APR-SP
(the fourth column in each panel) for images with different common corruptions and surface variations (the second column in each panel).
The original images are in the first column in each panel. Best viewed in color. APR-SP still is robust even in various corruptions.
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Figure 6. The Gradient-weighted Class Activation Mapping [10] of the baseline (the third column in each panel) and the proposed APR-SP
(the fourth column in each panel) for images with different common corruptions and surface variations (the second column in each panel).
The original images are in the first column in each panel. Best viewed in color. APR-SP still is robust even in various corruptions.


