
Postscript. After the first version of this manuscript, an au-
thor of BiT [25] and ViT [16], Lucas Beyer, echoed that
“the exact same behaviour” was observed for supervised
BiT-ResNet in ImageNet-21k. The instability problem can
be more general than the scope of this paper.

A. Additional Implementation Details
Data augmentation. We follow the good practice in exist-
ing works [45, 20, 10, 18]. Our augmentation policy in-
cludes random resized cropping, horizontal flipping, color
jittering [45], grayscale conversion [45], blurring [10], and
solarization [18]. We take two 224×224 crops for each im-
age in each iteration.

BatchNorm. We use SyncBN as our default BatchNorm
implementation, following [10]. When BN is used, there are
two options on batching: (i) all samples and crops are in the
same batch, i.e., BN is over 4096×2 crops for 4096 images;
and (ii) only different images are in the same batch, i.e.,
the two crops of the same image are separately forwarded
in two 4096 batches. We notice that the code of SimCLR
[10] adopts the former option, while the code in BYOL [18]
adopts the latter. The pseudo-code in our Alg. 1 implies
that we adopt the latter. The BN batching size influences
the gradient variance, and the two implementations should
lead to different results.

AdamW implementation. We notice that in PyTorch
and JAX, the weight decay in AdamW is implemented
as “-lr ∗ wd ∗ weight’’ (consistent with [31]), but in
TensorFlow it is implemented as “-wd ∗ weight”, and wd
needs to be scaled beforehand.8 In our TPU/TensorFlow
code, we follow the version consistent with [31].

MLP heads in BYOL and SwAV. In our BYOL+ViT im-
plementation, the projection/prediction MLP heads have
BN in their hidden layers, but not in their output layers,
which faithfully follow [18]. In our SwAV+ViT implemen-
tation, we use no BN in the MLP heads, which is a configu-
ration that performs the best in our SwAV experiments.

kNN monitor. The kNN monitor [45] is a widely used tool
in self-supervised learning research. The kNN evaluation
was often performed sparsely, e.g., once per epoch. We no-
tice that this may hide the sudden “dips” in the curves.

To better reveal the sudden changes, we monitor the kNN
performance more densely, e.g., every tens of iterations.
This is prohibitive even though the kNN classifier does not
need training. We adopt a few approximations to make it
feasible. We maintain a small memory bank [45] (whose
length is 10% of ImageNet) for the purpose of kNN search.
This memory bank is updated per iteration by the features
from the training samples (which are augmented images).
This memory bank is maintained as a queue similar to [20],

8
https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/AdamW

so it requires no extra feature extraction. We use the features
from the class token for kNN monitoring, so the monitor is
independent of the choice of the head. Other details follow
the kNN implementation in [45]. We find that this approx-
imate kNN monitor is sufficient to reflect the stability of
training.

MoCo v3 for ResNet-50. The implementation follows the
good practice in recent works [10, 18]. It uses the LARS
optimizer [47] with a 4096 batch [10], lr=0.3, wd=1.5e-6.
The temperature is τ=1.0. The encoder fk’s momentum co-
efficient ism=0.996 and increases to 1 with a cosine sched-
ule [18]. The augmentation is the same as described above.

https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/AdamW



