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Abstract

In this supplementary material, we first elaborate the de-
tails about our network architecture in Section 1. Then,
we provide additional explanation and more comparison
results about our dual-head contextual patch matching
(CPM) module in Section 2. Finally, more visual shadow
removal comparison results are given in Section 3. Note
that we did not include all the material in the main paper
due to the space limit.

1. Details about Network Architectures

CPM module. The architecture of our CPM module is
shown in Table 1, which divides into three parts: feature
extractor, pair type classifier, and correlation degree regres-
sor. The feature extractor is used to extract 256-dimensional
feature representations for input patch pairs. It is designed
with 4 convolutional layers, 3 residual blocks, and a bottle-
neck layer. The obtained representations are feed into the
classifier and regressor separately. Both the classification
head and the regression head contain 3 fully connected lay-
ers, and classification head also have a softmax layer.

CANet. In Figure 1, we illustrate the detailed network
architecture of our proposed CANet. Each orange rectan-
gles in the network is the feature map of the correspond-
ing layer, and the number in the rectangles is their channel
number. Note that the “DenseBlock”, “Transition layer” are
followed as the original version of DenseNet [5].

*This work was co-supervised by Chengjiang Long and Chunxia Xiao.
†Corresponding author.

Table 1. The architecture of our CPM module. It contains a feature
extractor, a pair type classifier, and a correlation degree regressor.

Layer Output Size Operation

Feature
extractor

Conv1 16× 16× 64 Conv(3× 3 stride 2)
Res1 16× 16× 64 Res-blocks(3× 3)

Conv2 8× 8× 96 Conv(3× 3 stride 2)
Res2 8× 8× 96 Res-blocks(3× 3)

Conv3 4× 4× 96 Conv(3× 3 stride 2)
Res3 4× 4× 96 Res-blocks(3× 3)

Conv4 4× 4× 64 Conv(3× 3 stride 1)
Bottleneck 256 FC

Classifier

FC1 256 FC
FC2 128 FC
FC3 3 FC

Softmax 3 Softmax

Regressor

FC1 256 FC
FC2 128 FC
FC3 1 FC

2. Better Understanding for CPM Module and
Comparison Results

2.1. Effectiveness of Light-unaware Images

As shown in Figure 2, with the supplementary light-
unaware image, we can largely eliminate the difference be-
tween shadow regions and non-shadow regions, which ef-
fectively avoids the matching errors caused by shadows, as
illustrated in Figure 6(a).

Also, from Figure 3, we can observe that there is a larger
difference between shadow image and light-unaware image
in shadow regions while a smaller difference in the non-
shadow region. It suggests that the shadow image and light-
unaware image pair can provide an indication to distinguish
shadow patches from non-shadow patches, which can be
used to perform our pair type classifier.

2.2. Large-scale Training Dataset for CPM

To train our CPM module, we collect a large-scale
training collection from the existing shadow benchmark



Figure 1. The network architecture of our CANet.

Figure 2. From left to right are: input shadow image; and the pro-
posed light-unaware image, which can eliminate the difference be-
tween region A and B caused by shadow.

(a) (b) (c)

Figure 3. The illustration of the difference between shadow image
and light-unaware image, from left to right are: (a)input shadow
image; (b)proposed light-unaware image and (c)the difference be-
tween them.

datasets: ISTD [8] and SRD [7]. The collected training

Figure 4. The illustration of our first way to collect matched patch
pairs.

dataset contains more than 360,000 and 600,000 patch pairs
separately (50% match pairs and 50% non-match pairs).
These patch pairs are collected from two ways: (1) we se-
lect a shadow patch in the shadow image and a matched
non-shadow patch in the shadow-free image, which has the
same position as the shadow patch, as illustrated in Figure
4; (2) we select a shadow patch from shadow regions and
find another matched patch from non-shadow regions in the
shadow image. Specially, we randomly select two patches
from shadow and non-shadow regions in the shadow image
and calculate the cosine similarity between the two patches
in the corresponding shadow-free image. We choose the
pairs with cosine similarity higher than 0.95 as the match-
ing pair and less than 0.6 as the non-match pair, as shown
in Figure 4. Due to the lack of shadow mask ground-truth
in SRD dataset [5], we firstly use the results of the lat-
est shadow detection method DSD [11], and then manually
choose the correct results as the approximate ground-truth
during the process of dataset collecting.

2.3. Results of Our Dual-head CPM Module

To further explain the superiority of our CPM module,
we give more comparison results of our CPM module with
the traditional-match method like SIFT [6] and MatchNet
[3] by asking two questions: (1) Does the matched patch



Figure 5. The illustration of our second way to collect matched
and non-matched patch pairs.

pair include a shadow patch and a non-shadow patch? and
(2) How about the accuracy of the similarity prediction?

Does the matched patch pair include a shadow patch
and a non-shadow patch? The CPM module is designed to
transfer contextual information from non-shadow regions to
shadow regions. To guarantee the accuracy of the predicted
matched patch pair, we have to ensure that the matched
patch pair contains a shadow patch and a non-shadow patch.
Table 2 summarizes the proportion that the matched patch
for a shadow patch is from non-shadow regions of differ-
ent matching methods. Note that the larger value is better.
We can clearly observe that our method can find the correct
matched patch type for shadow patches, abandoning the un-
desirable matched patch from the table.

Table 2. The proportion that the matched patch of a shadow patch
is from non-shadow regions on ISTD [8] and SRD [7] dataset.

Method ISTD SRD
Traditional-match 46.82% 37.21%

MatchNet [3] 63.75% 56.44%
Dual-head CPM 92.68% 90.35%

How about the accuracy of the similarity prediction?
We use the Mean Square Error (MSE) between the pre-
dicted correlation score and the ground truth as the met-
ric to evaluate our correlation regressor’s accuracy. Note
that the smaller value is better. Table 3 reports the quantita-
tive evaluation results, where we can see that our dual-head
CPM module outperforms the other methods. We also pro-
vide some qualitative results in Figure 6, which evidently
demonstrates the superiority of our CPM module.

Table 3. The quantitative comparison results of correlation score
prediction on ISTD [8] and SRD [7] dataset in terms of MSE.

Method ISTD SRD
Traditional-match 1.42 1.55

MatchNet [3] 0.68 0.81
Dual-head CPM 0.32 0.37

(a) (b) (c)

Figure 6. Patch matching results. From left to right are: (a)
Traditional-match; (b) MatchNet; (c) our Dual-head CPM mod-
ule.

3. More Visual Shadow Removal Results
In this section, we provide more visual shadow removal

comparison results in Figure 7. Here, we compare our
CANet with six state-of-the-art methods, i.e., Guo [2],
Zhang [10], ST-CGAN [8], ARGAN [1], DSC [4] and
RIS-GAN [9].
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Figure 7. Shadow removal results. From left to right are: (a) input images; shadow removal results of (b) Guo, (c) Zhang, (d) ST-CGAN,
(e) DSC, (f) ARGAN, (g) RIS-GAN, (h) our CANet; and (i) the corresponding shadow-free ground truth images.
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