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1. Training Details

We first provide the details of the network architec-
tures and hyperparameters of Figs. 4-6 and Table 1 of the
main paper. We implemented the algorithms and operators
(e.g. radon and iradon) in Python with PyTorch 1.6 and
trained the models on NVIDIA 1080ti and 2080ti GPUs.
Figure 1 illustrates the architecture of the residual U-Net
used [2] in our paper.

For the sparse-view CT task, we used the Adam opti-
mizer with a batch size of 2 and an initial learning rate
of 0.0005. The weight decay is 10−8. The distribution
strength β is 10−8 for EIadv . We trained the networks for
5000 epochs, keeping the learning rate constant for the first
2000 epochs and then shrinking it by a factor of 0.1 every
1000 epochs. More reconstruction examples are presented
in Figure 3.

For the inpainting task, we also used Adam but with a
batch size of 1 and an initial learning rate of 0.001. The
weight decay is 10−8. The distribution strength β is 10−8

for EIadv . We trained the networks for 2000 epochs, shrink-
ing the learning rate by a factor of 0.1 every 500 epochs.
Figure 2 shows the peak signal-to-noise ratio (PSNR) of
the reconstructions on the training and test measurements.
Again, the generalization error of EI is smaller than for the
supervised model. More reconstruction examples are pre-
sented in Figure 4.

α 0 1 10 100 1000

50-views CT 31.01 36.78 36.88 36.94 33.31

α 0 0.1 1 10

Inpainting 5.84 23.42 25.14 22.96

Table 1: Effect of the equivariance hyperparameter α on
the reconstruction performance (PSNR) in the 50-views CT
reconstruction (CT100 dataset) and image inpainting (Ur-
ban100 dataset) tasks.
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Figure 1: The residual U-Net [2] used in the paper. The
number of input and output channels is denoted as C, with
C = 1 in the CT task and C = 3 in the inpainting task.
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Figure 2: Reconstruction performance (PSNR) as a func-
tion of training epoch for the supervised model [1] and our
method (no ground truth) on inpainting task measurements
for training and testing.

2. More results

Effect of the equivariance hyperparameter α Table 1
shows EI reconstruction performance (PSNR) with differ-
ent equivariance strength values (α in Eqn. (6) of the main
paper). It performs reasonably well when α = 100 for the



CT task and α = 1 for the inpainting task. When α is too
small, the performance drops considerably; at the extreme
of no equivariance (α = 0), the model fails to learn. These
results support our motivation of equivariant imaging.

Effect of the networks’ inductive bias In the deep im-
age prior (DIP) paper, the authors showed that some spe-
cific convolutional networks can be trained to fit a single
image by only enforcing measurement consistency [3]. The
DIP approach relies heavily on the choice of the network
architecture (generally an autoencoder), and does not work
with various popular architectures (e.g. those with skip-
connections). Moreover, this approach is constrained to
a single image and cannot incorporate additional training
data.

In contrast, we show that our method can learn beyond
the range space without heavily relying on the inductive bias
of an specific autoencoder architecture. Moreover, we show
that EI outperforms the best DIP architecture as it lever-
ages the full compressed training dataset. We compare our
method with the DIP on the 50-views CT image reconstruc-
tion task. For our method, we use the same residual U-Net
as in the other experiments. We build the DIP using two ar-
chitectures: the same residual U-Net used in EI (which we
denote DIP-1) and the best autoencoder network suggested
in [3] (which we denote DIP-2). Following [3], we input
iid Gaussian noise to both DIP-1 (1 channel) and DIP-2 (32
channels). Our model is trained using the hyperparameters
for sparse-view CT (see Section 1). We train DIP-1 and
DIP-2 using 5000 training iterations and a learning rate of
0.001. As shown in Figure 5, our method outperforms the
DIP methods. DIP-2 performs significantly better than DIP-
1 due to the inductive bias of that autoencoder architecture.
In contrast, our method works very well even with the resid-
ual U-Net. Moreover, our model also outperforms DIP-2 by
5 dB.

Equivariant imaging using a single training image We
are interested in whether the proposed method works for
single image reconstruction, i.e. reconstructing a single
compressed measurement. Here we provide some prelimi-
nary results. As an example, we compared our method with
the DIP on the inpainting task for single image reconstruc-
tion. We trained all 3 models (EI, DIP-1, DIP-2) using 5000
training iterations and a learning rate of 0.001 on a single
measurement input. The results are presented in Figure 6.
We observe that our method works very well for this single
image reconstruction task and outperforms both DIP-1 and
DIP-2. In addition, DIP-1 performs worse than DIP-2 due to
the residual architecture with skip-connections. Again, our
model is not so dependent on the inductive bias of network
and works well when using the residual connections. We
note that although our method is able to learn with a single

measurement, the role of equivariance in this scenario needs
to be explored more, and we leave this for future work.
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Figure 3: More examples of sparse-view CT image reconstruction on the unseen test measurements. We train the super-
vised model (FBPConvNet [1]) with measurement/ground truth pairs while we train the equivariance learned model with
measurements alone. We adopt random rotations as the transformation T for our equivariance learning. We obtained results
comparable to supervised learning in artifacts-removal. Corresponding PSNR are shown in images.
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Figure 4: More examples of image inpainting reconstruction on the unseen test measurements. We train the supervised
model [1] with measurement/ground truth pairs while we train the equivariance learned model with measurements alone. We
adopt random shifts as the transformation T for our equivariance learning. We obtained results comparable to supervised
learning in recovering missing pixels. Corresponding PSNR are shown in images.
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Figure 5: Comparison between EI and DIP on 50-views CT reconstruction. We denote DIP-1 and DIP-2 as the DIP learned
models trained with residual U-Net (same as EI) and Encoder-Decoder (the best architecture for DIP as suggested in [3]),
respectively. We trained EI on a measurement set and direct apply the trained model on the given new measurement here.
Both DIP methods are trained using the given measurement here. Corresponding PSNR are shown in images.
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Figure 6: Comparison between EI and DIP for single image reconstruction on the inpainting task. We denote DIP-1 and
DIP-2 as the DIP learned models trained with residual U-Net (same as EI) and Encoder-Decoder (the best architecture for
DIP as suggested in [3]), respectively. All the models are trained with the given single compressed measurement data y.
Corresponding PSNR are shown in images.


