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Table 1. Comparison results on VIOLIN dataset. “Visual” column
indicates the visual features used in entailment judgment.

Method Visual Text Accuracy
VIOLIN [7] Resnet [2] BERT [l1] 67.60
Ours Resnet [2] BERT [1]] 68.39
VIOLIN [7] | Detection [4]  BERT [1] 67.84
Ours Detection [4]  BERT [1] 68.42
HERO [6] HERO 68.59
Ours HERO 69.16

In this appendix, we compare our method with a
video+language representation learning method HERO [6].
HERO [6] aims at learning a large-scale video+language
pretraining to solve many downstream tasks, such as video
entailment. Specifically, it is firstly pretrained on the large-
scale TVShow [5] and Howtol00M [8] datasets by sev-
eral pretraining tasks such as Masked Language Modeling.
Then, it is finetuned on the video entailment task. This
large-scale pretraining model outperforms VIOLIN [7]] in the
video entailment task.

In this appendix, we evaluate the proposed method us-
ing HERO as a backbone. Specifically, we replace the vi-
sual and textual feature extraction backbones by the HERO
pretrained encoder. The results in Table [I| show that the
proposed method using HERO as a backbone outperforms
the original HERO in video entailment. This is because our
method performs a fine-grained understanding of videos.

Following VIOLIN [7]], we also evaluate our method us-
ing detection features as visual embedding. We run Faster
R-CNN trained on Visual Genome [3] to detect object in
each frame and use the regional features as frame represen-
tation. Our method using detection features outperforms the
VIOLIN using detection features.
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