Supplementary Material:
FATNN: Fast and Accurate Ternary Neural Networks

Peng Chen,

Bohan Zhuang,

Chunhua Shen

Data Science & Al, Monash University, Australia

S1. Acceleration Details

As a fundamental operation in convolutional neural net-
works, the vector inner product is one of the core compo-
nents in acceleration. In this section, we first elaborate more
about the “non-overflow” property and the same parallelism
degree as well as their importance to the fast implementa-
tion. Then we present the detailed implementation of the
proposed fast ternary inner product and introduce its appli-
cation in the convolutional and fully-connected layers.

Non-overflow property: If the range of input quantized
vectors and the multiplication result in the inner product
keeps the same, we term it “non-overflow” property. The
multiplication result here, indicates the intermediate result
of multiplication between the two input quantized vectors.
Binary quantized values {1, —1} and ternary quantized val-
ues {1,0,—1} are examples. We attribute the fast imple-
mentation of our FATNN to the “non-overflow” property
because it enables the same parallelism degree for the multi-
plication (i.e., xnor) and accumulation (i.e., popcount) op-
erations. Specifically, for the BNNs case, 8 full-precision
values can be packed into one byte. When xnor is em-
ployed for the multiplication, the parallelism degree is 8.
Moreover, popcount also accumulates 8 data at the same
time (same parallelism degree with the xnor operation). For
the TNNs case, only 4 full-precision values can be packed
into one byte. Thus, the parallelism degree of our TM(-) in
Eq. (3) is 4. Interestingly, the popcount operation can also
accumulate the 4 data simultaneously. However, if stan-
dard 2-bit quantization values {0, 1, 2, 3} are leveraged, the
multiplication by combination of bit-wise operators (such
as xnor) can own the parallelism degree of 4 if packed in
byte. However, 4 bits are required to encode the multipli-
cation result. Thus, the parallelism degree for the accumu-
lation procedure is 2 at most (less than 4). Consequently,
the computational efficiency will be halved. Based on the
analysis, it can be learnt that the “non-overflow” property is
an important attribute to enable the fast implementation of
ternary and binary networks.

As explained in the Section 3, we design a fast imple-
mentation for TNNs by exploiting the “non-overflow” prop-

Algorithm 1: Fast Ternary Inner Product

Input: (1): Full-precision weight vector w € RY
and activation vector @ € RY. (2):
Pre-allocated temporary buffer w and a with
unsigned char type in the length of N/4. (3):
Quantization parameters a}’, oy’ and af, of
which are used to parameterize the step sizes
for weights and activations, respectively.

QOutput: The ternary inner product result z.

1 Step (1): data packing;

2 for i + 0to -1 do

Pack 4 values of a[4i : 4 + 3] into one unsigned

char and store it in a[i];

4 Pack 4 values of w(4i : 47 + 3] into one
unsigned char and store it in w[i];

5 end

6 Step (2): ternary inner product;

7 acc=0;

8 for i eOto%do

9 | acc+=popcount(TM(w/[i], a[i]));

10 end

11 z=acc— N

erty. Algorithm | summarizes the inference flow of the
proposed fast ternary inner product. In Algorithm 1, lines
2 ~ 5 quantize the full-precision input vector into the codec
of the quantized values. As 2 bits are required to encode one
ternary value, 4 full-precision values can be packed into one
byte. It is worth noting that it is also possible to pack the
full-precision data into other data structures. For example,
8 full-precision data can be packed into short type or 16
full-precision data can be packed into 32-bit int type. More
specifically, during the packing, each full-precision data is
compared with the corresponding quantization thresholds
characterized by {a1, ao} and assigned to the correspond-
ing codec value. After that, based on Egs. (5), (6), (7), the
accumulation is performed as lines 8 ~ 10 in Algorithm
1. Finally the logic level inner product result is obtained
according to Eq. (3) in line 11.

1
)
,I T >
N
W@
-1
— Distribution

—— Quantization

2
! _,
0 . j\ >
«\'19' i’ 0'\/ ;\9 x&
» ¥

Figure S1: The proposed non-uniform ternary quantization
for (a) a tensor in the real domain; (b) a tensor which only
contains non-negative values. The vertical axis represents
the quantized domain and the horizontal axis denotes the
real domain. The green curve indicates the distribution of
the full-precision tensor and the blue line shows the quan-
tized values by discretizing the full precision data according
to the learned thresholds. We aim to learn the optimal step
size of each quantization level.

Following the implementation of the fast ternary inner
product, the convolutional layer can be realized by first ex-
panding the input activation into a matrix (im2col) and then
conducting the matrix multiplication (gemm). To enhance
the efficiency, the data packing in Algorithm 1 is integrated
into the im2col operation. After that, the matrix multiplica-
tion is realized based on the inner product step in Algorithm
1. Tricks, such as winograd [9], are commonly employed
in the gemm operation, however we do not integrate these
tricks for simplicity. The fully-connected layer is similar to
the implementation of the convolutional layer, which can be
regarded as a special case of the latter with kernel size be-
ing equal to the feature map resolution. Other operations,
such as the ReLU non-linearity and skip connection layers,
can be fused in the im2col procedure. Besides, we fuse the
batch normalization layers into the corresponding convolu-
tional or fully-connected layers.

S2. Visualization of Non-uniform Step Sizes

In this paper, we discretize the full-precision tensor into
the ternary quantized values with trainable non-uniform

le4d

1.0
a,/2

—-a1/2
max
min

0.8

vV A > >

0.6 1

0.4
0.2 I I
0.0 - I I

>

—020 —0 15 —0 10 —005 000

(a) layerl_1_conv2
le4

25 A a2
’ A —m/2
<4 max
2.04
>
1.5
1.0
0.51
0.0 »
-0.15 —-0.10 -0.05 0.00 O. 010 0.15
(b) layer2_1_conv2
le5
1.2
A Q2
104 & -—o/2
< max
08{ »
0.6
0.41
0.21
0.0 <
-010 -005 O. 0.10

(c) layer3_1_conv2
le5

354 4 az/2
A —0q1/2

3.01 <« max

254 min

2.04

1.59

1.0

0.54

0.01 <

~0.056-0.0250.000 0.025 0.050 0.075 0.100 0.125 0.150

(d) layer4_1_conv2

Figure S2: Weight quantization for ResNet-18.

step sizes. For each quantized layer, we learn two param-
eters & = {ay, s} for weights and activations separately.

le7

1.2 a1+ ay/2
A /2
1.0 < max

0.8

0.6

0.4

0.21 II

.)
00 05 10 L

5 20 25 30 35

(a) layerl_1_conv2
le6

o+ az/2
8 A a1/2
< max

o

IA.I-—_, <

00 05 10 15 20 25 30 35

(b) layer2_1_conv2
le6

ay +az/2
A o/2
< max

0 l‘lI-__, <

00 05 10 15 20 25 30

(c) layer3_1_conv2
le6

3.5
a1+ az/2

a1/2
max

3.0

A >

251
2.0
1.5
1.0
0.5
oof BN Rma <

00 05 10 15 20 25 30 35

(d) layer4_1_conv2

Figure S3: Activation quantization for ResNet-18.

As illustrated in Figure S1, the quantization thresholds are

directly related to the learnt parameters o. When the two
scale factors are identical (ov; = aw), the proposed quan-
tization algorithm reduces to the uniform step size quanti-
zation [2, 11, 3]. Thus, it is interesting to investigate the
properties of the learnt v. We plot the distribution of the
full-precision weights and activations as well as the corre-
sponding quantization thresholds on ResNet-18 in Figure
S2 and S3, respectively. We list the statistics of four lay-
ers in ResNet-18. Besides, the max value, min value and
the two quantization thresholds of the tensors are marked in
each sub-figure. On the one hand, from Figure S2, we ob-
serve that the distribution of the weight in the model varies
a lot in different layers. In order to reduce the information
loss during quantization, we propose to learn the quanti-
zation thresholds automatically to better fit the data distri-
bution. On the other hand, Figure S3 demonstrates that,
the full-precision activations consist of dense relative small
values and sparse relative large values. The number of el-
ements of each interval is unbalanced. It can be seen from
Figure S3 that the quantization step sizes learnt based on the
stochastic gradient descent are non-uniform ones and differ
at different layers.

S3. More Execution Time Benchmarks

We present more acceleration benchmark results in this
section.

Firstly, for convenience of comparison, we list the the ex-
act execution time for the layer-wise benchmark described
in experiments section in Table S1 and Table S2, respec-
tively. We use Q821/Q835/2080Ti to indicate the Qual-
comm 821, 835 and Nvidia 2080Ti separately. Besides,
“bin” represents binary and “ter” means ternary in Table
S1 and Table S2. We measure the layer-wise execution time
for convolution layers (kernel size = 3 x 3, padding = 1,
stride = 1, the same number of input and output channels
and batch size = 1) with six different shape configurations.
For the first four cases, we fix the channel number to be 64
and increase the resolution from 28 to 224. For the last two
cases, we fix the resolution to be 56 and double the channel
number from 64 to 256. When focusing on the speedup of
the proposed ternary network against the conventional 2-bit
implementation (for example, the Figure 2 or the ‘ter/ter’
and ‘2/2’ rows in Table S1 and Table S2), the theoretical
speedup ratio for all cases is 2. However, comparing the
first 4 cases (doubled width/height) or the second and the
last two cases (doubled channel), speedup decreases then
becomes stable. The reason is that the speedup is highly
impacted by the hardware utilization, which is further re-
lated to the task size. When the task size is small, the hard-
ware unit is only partially used. As the feature map size
increases, hardware utilization is improved and the speedup
becomes more stable.

Secondly, we conduct more test for the overall network

Table S1: Exact execution time (ms) on embedded-side platforms. We run 5 times and report the mean results.

Device A/W | casel case2 «case3 cased case5 caseb
bin/bin 0.6 1.2 2.6 8.3 2.3 6

Q821 | ter/ter 0.9 1.7 44 14.8 4.2 13.5
2/2 1.9 3.5 8 249 72 212

bin/bin 0.7 0.9 1.9 6.1 1.8 4.8

Q835 | ter/ter 0.9 1.5 3.7 13.2 3.2 12.7
2/2 2.1 3 6.5 20.5 5.6 15.8

Table S2: Exact execution time (1) on server-side platforms. We run 5 times and report the mean results.

Device A/W casel case2 case3 case4 case5 case6
bin/bin 11 12.5 19.5 56.5 22 55.5

2080Ti | ter/ter 11 14.5 26 90 34 87
2/2 38 44 73.5 274 91 2175

with commercial Qualcomm SNPE SDK. The half floating-
point ResNet-18 by the Qualcomm SNPE SDK costs 44.7
ms on Qualcomm 821 (batch size = 1 on ImageNet) while
the ternary counterpart is 25.2 ms. The practical speedup
is impacted by high-precision MISC operations (such as
im2col) and modern hardware architectures (such as sep-
arate pipelines for floating-point and fixed-point computa-
tion).

S4. Evaluation on CIFAR-10
S4.1. Training hyper-parameters on CIFAR-10

We follow the hyper-parameter setting in previous works
[10, 8] to train the networks on the classification task.
Specifically, for ResNet-20 on CIFAR-10, we train up to
200 epochs. The initial learning rate starts from 0.1 and is
divided by 10 at epoch of 82 and 123, respectively. We use
a weight decay of le-4 and a batch size of 128. For VGG-
Small on CIFAR-10, the learning rate begins with 0.02 and
is divided by 10 at epoch of 80 and 160, separately. The
weight decay is set to be Se-4, batch size to be 128 and
total epochs to be 200. For NIN on CIFAR-10, we train 90
epochs with the initial learning rate to be le-2. The learning
rate is divided by 10 at epoch of 30 and 60. Weight decay is
set to be le-5.

S4.2. Comparison on CIFAR-10

We further demonstrate the effectiveness of the proposed
method on CIFAR-10 [4] dataset. For CIFAR-10, the input
images are firstly padded with 4 pixels and then cropped
into 32x32 samplings. Random horizontal flip is em-
ployed for data augmentation. NIN [6], VGG-Small [7] and
ResNet-20 are employed for the evaluation. Comparisons
between our FATNN and other quantization algorithms are
listed in Table S3.

Table S3: Top-1 accuracy (%) comparisons between our
FATNN and other algorithms, including RTN [5], HWGQ

[1], LQ-Net [10] and TSQ [8] on CIFAR-10 dataset.
Method | A/W | ResNet-20 | NIN | VGG-Small
32/32 92.1 89.8 93.8
FATNN | ter/ter 90.2 89.9 93.7
RTN ter/ter - 89.6 -
HWGQ 2/1 - - 92.5
LQ-Net 2/1 88.4 - 934
TSQ 2/ter - - 93.5
LQ-Net 2/2 90.2 - 93.5

From Table S3, we observe that for ResNet-20 and
VGG-Small, the proposed method is able to achieve compa-
rable accuracy for ternary networks compared with higher
bit counterparts (“2/2” or ‘“2/ter”’) quantized by LQ-Net and
TSQ. Moreover, it surpasses RTN, HWGQ and LQ-Net on
all the corresponding “2/1” or “ter/ter” networks. For NIN,
our FATNN even beats the full-precision counterpart. It im-
plies that network quantization has certain kind of regular-
ization effect to suppress the over-fitting problem. Overall,
the proposed FATNN demonstrates superior performance
on the CIFAR-10 dataset.

References

[1] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaussian
quantization. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
pages 5918-5926, 2017. 4

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. In Proc. Int. Conf. Learn.
Repren., 2020. 3

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., pages 4350-4359, 2019. 3
Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 4

Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuan-
peng Chen, and Wei Wang. Rtn: Reparameterized ternary
network. In AAAI 2020. 4

Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013. 4

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Proc.
Int. Conf. Learn. Repren., 2015. 4

Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang,
Yang Liu, and Jian Cheng. Two-step quantization for low-
bit neural networks. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., pages 43764384, 2018. 4

Athanasios Xygkis, Lazaros Papadopoulos, David Moloney,
Dimitrios Soudris, and Sofiane Yous. Efficient winograd-
based convolution kernel implementation on edge devices.
In Proc. 55th Annual Design Automation Conf., DAC 18,
pages 136:1-136:6, New York, NY, USA, 2018. 2
Dongging Zhang, Jiaolong Yang, Dongqgiangzi Ye, and Gang
Hua. Lg-nets: Learned quantization for highly accurate and
compact deep neural networks. In Proc. Eur. Conf. Comp.
Vis., 2018. 4

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 3

