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Appendix A - Detailed Objective Functions

Co-attention mask network (CMN)

The overall objective function for training the single-
frame CMN is defined as:

LCMN = λL1
LL1

+ λBCELBCE + λPatchLPatch. (1)

For capturing the global structural information, we adopt
LL1 and LBCE :
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LBCE = −M̂r log(Mr) + (1− M̂r) log(1−Mr)

− M̂c log(Mc) + (1− M̂c) log(1−Mc).
(3)

For capturing the regional information (e.g., excluding the
human limbs cross in front of the clothes and considering
the spaghetti strap), the patch loss is conducted to focus on
small patches within the clothing region. We randomly se-
lect three 64x64 patches within the clothing region to learn
the regional information based on the L1 distance loss.

LPatch =

3∑
i=1

∑
W

∑
H

∥∥∥(Mr)i − (M̂r)i

∥∥∥
1

+
3∑

j=1

∑
W

∑
H

∥∥∥(Mc)j − (M̂c)j

∥∥∥
1
,

(4)

where i and j represent the index of the selected patches.
For the multi-frame CMN, the overall loss function is only
based on M t+1

c since it only predicts one output M t+1
c .

Human and clothing feature remapping

The overall objective function consists of both spatial
and temporal loss.

Ltryon = Lspatial + Ltemporal. (5)

The spatial loss (Lspatial) can be categorized into two
parts:

Lspatial = Ls
human + Ls

clothes

= λGANLGAN + λL1LL1 + λbLbody

+ λcLcontent + λsLstyle + λpLpatch.

(6)

In the following, we introduce every loss function. LGAN

helps the generator Gh to learn the real image distribution.

LGAN = E[logDs(h
t)] + E[log(1− Ds(h

t
g))], (7)

where Ds is the spatial discriminator. LL1 ensures the syn-
thesis quality at the pixel level.
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We design the body part loss (Lbody) to learn the structural
information of the semantic segmentation since we do not
take them as inputs to accelerate the inference time, i.e.,
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where M̂ t
limb and M̂ t

bg represent the human limb mask and
the background mask in frame t, respectively. The content
loss and the style loss focus on the salient regions: head and
clothes to imitate the feature distribution of the groundtruth



Figure 1. Qualitative results. FashionMirror performs robustly in changing the clothing tightness, e.g., from tight to loose: the source
human (V) tries on the try-on clothes (V), and from loose to tight: the source human (I) tries on the try-on clothes (III).

for generating realistic details. The content loss is calcu-
lated by the pre-trained VGG19 [5] and the style loss is cal-

culated by the gram matrix G [2].

Lcontent =
∑
i

∥∥ϕi(h
t
g)− ϕi(h

t)
∥∥
1

+
∑
i

∥∥∥ϕi(h
t
g ⊗M t

c)− ϕi(h
t ⊗ M̂ t

c)
∥∥∥
1

+
∑
i

∥∥∥ϕi(h
t
g ⊗ M̂ t

head)− ϕi(h
t ⊗ M̂ t

head)
∥∥∥
1
,

(10)



where ϕi represents the feature map obtained from the ith

layer. M̂ t
head denotes the head mask in frame t.
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In order to focus on the detailed patch from the clothing
region, we apply the same design as Eq. (4) to extract the
local clothing patches from ht

g ⊗M t
c .
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where k = ((x1, y1), (x2, y2)) represents the box coordi-
nate of the picked patch. The temporal loss (Ltemporal)
can be divided into three parts:

Ltemporal = Lflow + Lt
human + Lt

clothes

= λcorrLcorr + λGANt
LGANt

+ λpt
Lpatcht

.
(13)

In the following, we first introduce LGANt
and Lpatcht

.
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where Dt is the temporal discriminator and n represents a
size of the video subsequence. For retaining the smooth
variation of clothing wrinkles, we design a temporal patch
loss:
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where k = ((x1, y1), (x2, y2)) represents the box coordi-
nate of the picked patch.

Appendix B - Additional Qualitative Results
Given five source humans and five try-on clothes with

one pose sequence, Fig. 1 demonstrates the try-on results
for different source humans and try-on clothes in one pose
sequence. The results show the try-on results are stable to
the clothing categories. For example, source human (I) with
no sleeve shift dress can try on the long sleeve bodycon
dress (try-on clothing III). In this case, the lower part of
the shift dress is loose, but the lower part of the bodycon
dress needs to tightly fit the human body shape and demon-
strate the hourglass body. The try-on results indeed demon-
strate this difference. Besides, source human (V) with long

sleeve bodycon dress can try on the try-on clothes (II) or
(V), which are no sleeve A-line dresses. The lower part of
the bodycon dress tightly fits the source human body, but the
lower part of the A-line dress widens from the waist to the
hem. Furthermore, our try-on model can distinguish how
wide the A-line dress is. The bottom of the try-on clothes
(II) is wider than the try-on clothes (V) and the try-on re-
sults well demonstrate this characteristic, especially the try-
on results of the source human (V).

Besides the clothing characteristic of tightness, it is
worth discussing the clothing texture. For try-on clothes
(I), the upper part of the dress contains unique texture and
the dress is designed to slim down the waistline. Both two
characteristics of the dress are well shown in the first two
columns of the try-on results. For try-on clothes (IV), it
contains horizontal lines in haphazard distribution, and the
try-on results follow the distribution without over distortion.

Besides the clothing texture preservation, the human
characteristic and human posture are essential for the vir-
tual try-on results. For example, the source human (IV) has
short and dark hair, and the source human (I) has long and
blonde hair. Their try-on results in row (I) and (IV) pre-
serve the human characteristics and demonstrate the differ-
ence. Take the middle columns in Fig. 1 as examples for
unique human posture. The try-on results achieve unique
poses with arm akimbo and feet cross, which is a unique
pose for fashion catwalks.

In summary, the above cases show that our novel
designed model, FashionMirror, can synthesize realistic
try-on results in different poses. Specifically, Fashion-
Mirror prevents the try-on results from being affected
by the clothes on the source human, demonstrates the
clothing tightness, preserves the clothes texture, and
achieves unique poses. For the try-on results in se-
quential poses, please refer to the video examples on
https://github.com/FashionMirror/FashionMirror.

Appendix C - Additional Experiments
Runtime comparison of try-on model

Table 1. Inference time comparison. (sec/frame)

Method

Semantic

TotalPose Segmentation† Virtual
Estimation or Co-attention Try-on

Mask‡

CPVTON+GFLA

0.1168 0.3469†

0.1918 0.6555
ACGPN+GFLA 0.2336 0.6973
FashionOn (Gr) 0.0588 0.5225
VTNCAP 0.2325 0.6962
FWGAN 0.0980 0.5617
Ours 0.1983‡ 0.0624 0.3775

We randomly sample 40,000 input sets to report the av-
erage inference time of baselines on one NVIDIA 2080-Ti
GPU. Table 1 shows that our model is the most efficient and

https://github.com/FashionMirror/FashionMirror


outperforms all baselines, e.g., FashionMirror outperforms
FWGAN in terms of runtime by 32.8%.

Visual quality comparison between co-attention
mask and semantic segmentation

Figure 2. Co-attention mask vs. semantic segmentation.

We use [3] to generate semantic segmentation and use
the first sub-network of [1] to predict the target semantic
segmentation. Fig. 2 shows that the semantic segmenta-
tion for the clothing regions are inconsistent, including blue
(dress) and green (skirt) even within the three consecutive
frames. In contrast, the proposed co-attention mask focuses
on the clothing region, and thus improves the performance.

Ablation study of the clothing patch loss (LPatch)

Figure 3. The ablation study of the clothing patch loss.

Fig. 3 shows the ablation study of the clothing patch loss
(LPatch) for stage I (co-attention mask network) and stage
II (human and clothing feature remapping). LPatch makes
stage I predict masks with more robust contour and helps
stage II generates detailed information, e.g., the buttons.

Try on another clothing type

Figure 4. Try-on results with another clothing type.

Since the FashionVideo dataset [6] only contains one
clothing type, i.e., dress, and there is no other fashion video
dataset, we train our model on the image-based fashion
dataset [4] by duplicating images as a video. Fig. 4 reports
the try-on results with T-shirts, which demonstrates that
FashionMirror can try on different kinds of clothes within
different races if try-on videos with other styles are avail-
able.

Appendix D - Limitation

Figure 5. Failure case caused by the limited network concentration.

The high heels on the source human cannot always be
well-preserved in the try-on results. As shown in Fig. 5,
this failure is caused by the limited network concentration.
The objective functions guide the network to focus on the
global human information and the clothing region to syn-
thesize the essential part correctly. As such, the region of
the high heels compared to the global human is too small to
be well-preserved since it only contributes a small amount
to the objective function. Hence, it could be better to apply
attention or a regularization term on the high heel region.
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