Supplemental Material Gaussian Fusion: Accurate 3D Reconstruction via Geometry-Guided Displacement Interpolation

Duo Chen^{1,2}, Zixin Tang¹, Zhenyu Xu¹, Yunan Zheng¹, Yiguang Liu^{1*} ¹Sichuan University, ²Chongqing University of Education

duochen3@gmail.com liuyg@scu.edu.cn

1. Real Object Dataset

We illustrate our real object dataset at the end of this supplemental material (depth maps and masks). We place an Intel L515 packing box ($115mm \times 115mm \times 60mm$) under each item as a size reference.

2. Mathematical Definition and Theorem

For self-contained, we give the important definition (*Wasserstein space*) and theorem (*Displacement interpolation*) in the following subsections. It may help readers to understand our unique displacement interpolation framework.

2.1. Wasserstein Space

Definition 1 Wasserstein space[1] Let (\mathcal{X}, d) be a Polish metric space, and let $p \in [1, \infty)$. The Wasserstein space of order p is defined as

$$P_p(\mathcal{X}) := \left\{ \mu \in P(\mathcal{X}); \int_{\mathcal{X}} d(x_0, x)^p \mu(dx) < +\infty \right\}$$

where μ is probability measures on \mathcal{X} , and $x_0 \in \mathcal{X}$ is arbitrary. This space does not depend on the choice of the point x_0 . Then W_p defines a (finite) distance on $P_p(\mathcal{X})$.

2.2. Displacement Interpolation

Theorem 2.1 *Displacement interpolation*[1]

Let (\mathcal{X}, d) be a Polish space, and $(\mathcal{A})^{0,1}$ a coercive Lagrangian action on \mathcal{X} , with continuous cost functions $c^{s,t}$. Whenever $0 \leq s < t \leq 1$, denote by $C^{s,t}(\mu, \nu)$ the optimal transport cost between the probability measures μ and ν for the cost $c^{s,t}$; write $c = c^{0,1}$ and $C = C^{0,1}$. Let μ_0 and μ_1 be any two probability measures on \mathcal{X} , such that the optimal transport cost $C(\mu_0, \mu_1)$) is finite. Then, given a continuous path $(\mu_t)_{0 \leq t \leq 1}$, the following properties are equivalent:

(*i*) For each $t \in [0, 1]$, μ_t is the law of γ_t , where $(\gamma_t)_{0 \le t \le 1}$ is a dynamical optimal coupling of (μ_0, μ_1) ;

(ii) For any of three intermediate times $t_1 < t_2 < t_3$ in [0, 1],

$$C^{t_1,t_2}(\mu_{t_1},\mu_{t_2}) + C^{t_2,t_3}(\mu_{t_2},\mu_{t_3}) = C^{t_1,t_3}(\mu_{t_1},\mu_{t_3});$$

(*iii*) The path $(\mu_t)_{0 \le t \le 1}$ is a minimizing curve for the coercive action functional defined on $P(\mathcal{X})$ by

$$\mathbb{A}^{s,t}(\mu) = \sup_{\substack{N \in \mathbb{N} \\ s=t_0 < t_1 < \dots < t_N = t}} \sum_{i=0}^{N-1} C^{t_i,t_{i+1}}(\mu_{t_i},\mu_{t_{i+1}})$$
$$= \inf_{\gamma} \mathbb{E}\mathcal{A}^{s,t}(\gamma), \tag{1}$$

where the last infimum is over all random curves γ : $[s,t] \rightarrow \mathcal{X}$ such that law $(\gamma_{\tau}) = \mu_{\tau} (s \leq \tau \leq t)$.

Corollary 1 Uniqueness of displacement interpolation[1] With the same assumptions as in Theorem Displacement interpolation, if:

(*i*) there is a unique optimal transport plan π between μ_0 and μ_1 ;

(*ii*) $\pi(dx_0, dx_1)$ – almost surely, x_0 and x_1 are joined by a unique minimizing curve;

then there is a unique displacement interpolation $(\mu_t)_{0 \le t \le 1}$ joining μ_0 to μ_1 .

References

 Cédric Villani. *Optimal transport: old and new*, volume 338. Springer Science & Business Media, 2008.

Ragnaros

Fighter

Exia_0

Roshan

Squirtle

House_2

House_3

Skeleton