
Unsupervised Geodesic-preserved Generative Adversarial Networks for
Unconstrained 3D Pose Transfer

Haoyu Chen1 Hao Tang2 Henglin Shi1 Wei Peng1 Nicu Sebe3 Guoying Zhao1,*

1CMVS, University of Oulu 2Computer Vision Lab, ETH Zurich 3DISI, University of Trento
{chen.haoyu, henglin.shi, wei.peng, guoying.zhao}@oulu.fi

hao.tang@vision.ee.ethz.ch nicu.sebe@unitn.it

The supplementary material includes technical details
(this file) as well as the source code (.zip file) attached. The
IEP-GAN architecture (Sec. 1) and implementing and train-
ing details (Sec. 2) as described in the main manuscript are
all provided.

1. IEP-GAN Network Architectures
Our IEP-GAN framework consists of four main parts: a

3D mesh encoder, a generator, a global discriminator and an
extrinsic discriminator. We first introduce each component
in the IEP-GAN, then the whole model will be introduced.

1.1. 3D Encoders

The architecture of encoders is presented in Table 1. The
encoder is derived from classical PointNet model [4] while
we replace the batch normalization layers into Instance nor-
malization as introduced in [5]. The input of the encoder is
a 3d mesh with V vertices. The output is the latent codes
of pose and shape information which are from the layers of
Index “Pose code” and “shape code”.

1.2. 3D Generator

The network architecture of the generator/decoder is pre-
sented in Table 2. It contains several SPAdaINResBlock
as well as InstanceNorm block introduced from [6] specif-
ically for 3D style transfer task. The detailed structure of
a SPAdaIN ResBlock and an InstanceNorm block are pre-
sented in Table 3 and Table 4. The generator is used to take
the shape code and pose code from the encoder and generate
a new 3D mesh.

1.3. Global discriminator

The network architecture of the global discriminator is
presented in Table 5. The design of the global discrimina-
tor is asymmetry of the generator except that we stack two

*Corresponding Author. Code is available: https://github.
com/mikecheninoulu/Unsupervised_IEPGAN

Table 1: 3D encoder architecture. “N” stands for batch size
and “V” stands for vertex number. The first parameter of
conv1d is the kernel size, the second is the stride size. The
same as below. Pose code and shape code are obtained sep-
arately from the encoder. Note that the shape code is differ-
ent for the task of disentanglement and pose transfer task.

Index Inputs Operation Output Shape
(1) 3D mesh Input mesh N×3×V

Shape code
(Pose transfer) (1) - N×3×V

(2) (1) conv1d (1 × 1, 1) N×64×V
(3) (2) Instance Norm, Relu N×64×V
(4) (3) conv1d (1 × 1, 1) N×128×V
(5) (4) Instance Norm, Relu N×128×V
(6) (5) conv1d (1 × 1, 1) N×512×V
(7) (6) Instance Norm, Relu N×512×V
(8) (7) conv1d (1 × 1, 1) N×512×V

Pose code (8) Instance Norm, Relu N×512×V
(9) (7) conv1d (1 × 1, 1) N×1024×V

(10) (9) Instance Norm, Relu N×1024×V
(12) (11) conv1d (1 × 1, 1) N×2048×V

Shape code
(Disentanglement) (12) Instance Norm, Relu N×2048×V

Table 2: 3D generator architecture. It takes the shape code
and pose code to generate corresponding meshes with given
latent code information.

Index Inputs Operation Output Shape

(1) Pose code - N×256×V
(2) Shape code - N×6890×V
(3) (1) conv1d (1 × 1, 1) N×128×V
(4) (3)(2) SPAdaIN ResBlock 1 N×128×V
(5) (5) conv1d (1 × 1, 1) N×512×V
(6) (5)(2) SPAdaIN ResBlock 2 N×512×V
(7) (6) conv1d (1 × 1, 1) N×256×V
(8) (7)(2) SPAdaIN ResBlock 3 N×256×V
(9) (8) conv1d (1 × 1, 1) N×3×V

(10) (9) Tanh N×3×V

linear connections to the last layer of the discriminator to
produce the prediction of real or fake meshes.

https://github.com/mikecheninoulu/Unsupervised_IEPGAN
https://github.com/mikecheninoulu/Unsupervised_IEPGAN


Table 3: SPAdaIN ResBlock architecture. C stands for the
channel number for each layer, which varies according to
the layer sizes in the full generator structure introduced in
Table. 2.

Index Inputs Operation Output Shape

(1) Shape code - N×C×V
(2) Pose code - N×6890×V

(14) (1)(2) InstanceNorm block N×C×V
(15) (14) conv1d(1 × 1, 1), Relu N×C×V
(16) (14)(15) InstanceNorm block N×C×V
(17) (16) conv1d(1 × 1, 1), Relu N×C×V
(18) (12)(13) InstanceNorm block N×C×V
(19) (18) conv1d(1 × 1, 1), Relu N×C×V
(20) (17)(19) Add N×C×V

Table 4: InstanceNorm block architecture. It is used to nor-
malize the input data without repealing the instance infor-
mation which is effective in style transfer learning task.

Index Inputs Operation Output Shape

(1) Pose code - N×C×V
(2) (1) Instance Norm N×C×V
(3) Shape code - N×6890×V
(4) (3) conv1d (1 × 1, 1) N×C×V
(5) (3) conv1d (1 × 1, 1) N×C×V
(6) (4)(2) Multiply N×C×V
(7) (6)(5) Add N×C×V

Table 5: 3D discriminator architecture. It takes a generated
mesh as input and predict if the mesh is a fake one or not.
Index Inputs Operation Output Shape

(1) Generated mesh - N×3×V
(3) (1) conv1d (1 × 1, 1) N×256×V
(4) (3)(2) SPAdaIN ResBlock 1 N×256×V
(5) (5) conv1d (1 × 1, 1) N×512×V
(6) (5)(2) SPAdaIN ResBlock 2 N×512×V
(7) (6) conv1d (1 × 1, 1) N×1024×V
(8) (7)(2) SPAdaIN ResBlock 3 N×1024×V
(9) (8) AdaptiveMaxPool2d N×4×512

(10) (9) Flatten N×2048
(11) (10) Linear N×1024
(12) (11) Linear N×1

1.4. Laplacian co-occurrence discriminator

The structure of the Laplacian co-occurrence discrimi-
nator is presented in Table 6. The design is similar to the
global discriminator but the co-occurrence one is a multi-
head structure that takes both generated meshes and refer-
ence meshes. The Laplacians of the meshes are obtained by
implementing classical Laplacian transform of the original
meshes with random iterations between 1 to 100.

Table 6: Laplacian co-occurrence architecture. It takes sev-
eral Laplacians as input and predict if there are in the same
pattern or not. Fake and Ref Laplacian stand for Laplacian
from generated pose and real pose mesh. n stands for the
reference mesh number.
Index Inputs Operation Output Shape

(1) Fake Laplacian - N×3×V
(2) (1) conv1d (1 × 1, 1) N×64×V
(3) (2) Instance Norm, Relu N×64×V
(4) (3) conv1d (1 × 1, 1) N×128×V
(5) (4) Instance Norm, Relu N×128×V
(6) (5) conv1d (1 × 1, 1) N×256×V
(7) (6) Instance Norm, Relu N×256×V
(8) (7) conv1d (1 × 1, 1) N×256×V
(9) (8) Instance Norm, Relu N×256×V

(10) Ref Laplacian - N×3×V
(11) (10) conv1d (1 × 1, 1) N×n×64×V
(12) (11) Instance Norm, Relu N×n×64×V
(13) (12) conv1d (1 × 1, 1) N×n×128×V
(14) (13) Instance Norm, Relu N×n×128×V
(15) (14) conv1d (1 × 1, 1) N×n×256×V
(16) (15) Instance Norm, Relu N×n×256×V
(17) (16) conv1d (1 × 1, 1) N×n×256×V
(18) (17) Instance Norm, Relu N×n×256×V
(19) (18) Mean N×256×V
(20) (19)(9) Concatenate N×512×V
(21) (20) AdaptiveMaxPool2d N×16×16
(22) (21) Linear N×1024
(23) (22) Linear N×1

2. Training Settings

The IEP-GAN is implemented in PyTorch [3]. The hard-
ware environment for training is a remote server with a
single NVIDIA Tesla V100, 32GB. The rum time testing
is conducted on a local PC with a single GPU NVIDIA
GTX 1080Ti, CPU Intel Core i7. We train our networks for
40,000 epochs with a learning rate of 0.00005 and Adam
optimizer. The batch size is fixed as 4 for all the settings.
Training time is around 26-30 hours. The reference Lapla-
cian number is set as three. The vertex number of FAUST
and DFAUST datasets are kept unchanged as 6,890 with-
out down-sampling. The vertex number for local regional
geodesic calculation is set as 400. For each training itera-
tion, two local regions will be adaptively sampled.

Training GAN is extremely hard and easily encounters
the generator collapses issue or degenerate meshes, thus we
design the training of the IEP-GAN with three stages. For
the first 2× 104 iterations, only reconstruction is conducted
to stabilize the GAN and avoid local minima, where the pair
of reconstruction adversarial loss is used with raw SMPL
meshes from [6]. From iterations 2 × 104 to 3 × 104, the
pose transfer learning starts with the swapping loss and ex-
trinsic preservation loss added on [1] or [2]. The intrinsic



preservation loss will be added after 3× 104 iterations.

References
[1] Federica Bogo, Javier Romero, Matthew Loper, and Michael J

Black. Faust: Dataset and evaluation for 3d mesh registration.
In CVPR, 2014. 2

[2] Federica Bogo, Javier Romero, Gerard Pons-Moll, and
Michael J Black. Dynamic faust: Registering human bodies
in motion. In CVPR, 2017. 2

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 2

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In CVPR, 2017. 1

[5] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 1

[6] Jiashun Wang, Chao Wen, Yanwei Fu, Haitao Lin, Tianyun
Zou, Xiangyang Xue, and Yinda Zhang. Neural pose transfer
by spatially adaptive instance normalization. In CVPR, 2020.
1, 2


