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1. Kinematic Bicyle Model
The kinematics of the bicycle model [7] T ego used in our

CARLA experiment is described below:

ẋ = v cos(θ + β)

ẏ = v sin(θ + β)

v̇ = a

θ̇ =
v

rb
sin(β)

tan(β) =
rb

fb + rb
tan(φ)

We train T ego in an auto-regressive manner using L1 loss
and stochastic gradient descent:

Jego =

T∑
t

|xt − x̂t|+ |yt − ŷt|

+

T∑
t

| cos(θt)− cos(θ̂t)|+ | sin(θt)− sin(θ̂t)|

where xt+1, yt+1, θt+1, vt+1 = T ego(xt, yt, θt, vt, at), and
at = (st, tt, bt). We only model θ as a transform of s; a as
a transform of (t, b), and vehicle wheelbases rb, fb. We use
an action repeat of 5 frames, hence both data collection and
planning operate at 4 FPS, whereas the simulator and the
visuomotor policy run at 20 FPS.

2. ProcGen Training Levels Returns
Figure 1 plots the average episode returns of our method

against PPO [8], PPG [2], and PPO with access to privileged
information.

3. Additional details for CARLA experiments
Dataset. For the CARLA leaderboard, we collect 1M
frames, corresponding to roughly 69 hours of driving. For
the NoCrash benchmark [4], we collect 270K frames. The
dataset uses a privileged autopilot πb. However, we do not
store the controls from the ego-vehicle autopilot, unlike im-
itation learning. The RGB image is collected and stitched

from three front-facing cameras all mounted at x=1.5m,
z=2.4m in the ego-vehicle frame. Each camera has a 60◦

FOV; the side cameras are angled at 55◦. For the CARLA
leaderboard, we additionally use a telephoto camera with
50◦ FOV to capture distant traffic lights. To augment the
dataset, we additionally mount two side camera suites with
the same setup, each mounted as if the vehicle is angled at
±30◦ following Bojarski et al. [1]. For the CARLA leader-
board, we collect our dataset in the 8 public towns under a
variety of weathers. For the NoCrash benchmark, we collect
our entire dataset in Town1 under four training weathers, as
specified by the CARLA benchmark [5, 3].

Experimental setup. For the CARLA leaderboard, agents
are asked to navigate to specified goals through a variety
of areas, including freeways, urban scenes, and residential
districts, and in a variety of weather conditions. The agents
face challenging traffic situations along the route, including
lane merging/changing, negotiations, traffic lights, and inter-
actions with pedestrians and cyclists. Agents are evaluated
in held-out towns in terms of a Driving Score metric that is
determined by route completion and traffic infractions.

In the NoCrash benchmark, agents are asked to safely
navigate to specified goals in an urban setting with inter-
sections, traffic lights, pedestrians, and other vehicles in the
environment. The NoCrash benchmark consists of three driv-
ing conditions, with traffic density ranging from empty to
heavily packed with vehicles and pedestrians. Each driving
condition has the same set of 50 predefined routes: 25 in the
training town (Town1) and 25 in an unseen town (Town2).
Agents are evaluated based on their success rates. A trial on
a route is considered successful if the agent safely navigates
from the starting position to the goal within a certain time
limit. The time limit corresponds to the amount of time
required to drive the route at a cruising speed of 5 km/h, ex-
cluding time spent stopping for traffic lights or other traffic
participants. In addition, a trial is considered a failure and
aborts if a collision above a preset threshold occurs, or the
vehicle deviates from the route by a preset margin. Each trial
is evaluated on six weathers, four of which are seen in train-
ing and two that are only used at test time. The four training



(a) Maze 2000 training levels (b) Maze 10000 training levels (c) Heist 2000 training levels (d) Heist 10000 training levels

Figure 1: Comparison of our method to state-of-the-art model-free reinforcement learning on the navigational tasks of the
ProcGen benchmark. All plots measure the average episode returns on the training levels. Experimental setup follows
Figure ??.

weathers are “Clear noon”, “Clear noon after rain”, “Heavy
raining noon”, and “Clear sunset”. The two test weathers are
“Wet sunset” and “Soft rain sunset”. We use CARLA 0.9.10
for all experiments.

4. Additional NoCrash Experiments

Table 1 compares our visuomotor agent, which is trained
with an auxiliary semantic segmentation loss, with a sim-
pler baseline that does not use this auxiliary loss. Policies
trained with semantic segmentation consistently outperform
the action-only baseline, especially under generalization set-
tings. We observed the same for the LBC baseline, which
also uses semantic segmentation as an auxiliary loss.

Table 2 additionally compares the route completion rates
of the presented approach (Ours) to prior state-of-the-art on
the CARLA NoCrash benchmark.

Table 3 shows success rates of our method on two addi-
tional random seeds in addition to the one in table 2 from
main manuscript. Denser traffic results in higher variance in
success rates.

Table 4 compares different variation of our visuomotor
agent at the distillation stage. CA stands for camera augmen-
tation, meaning the model trains on the additional augmented
camera images, described in section 4. SA stands for “speed
augmentation”. An SA model trains to predict action val-
ues on all discretized speed bins, instead of taking as input
the recorded speed reading from the dataset. During test
time, an SA models uses linear interpolation to extract the
action-values corresponding to the ego-vehicle speed. Mod-
els trained with camera or speed augmentation consistently
outperform ones that were not, showing the benefits of dense
action-values computed using our factorized Bellman up-
dates. We therefore use camera and speed augmentation for
our models for the CARLA leaderboard and the NoCrash
benchmark. With the augmented supervision extracted from
the dense action-values, models perform well even without
trajectory noise injection [6, 4].

Auxilliary loss
Town Weather × X

train train 95 98
train test 70 90
test train 80 94
test test 46 78

Table 1: Comparison of success rate in the NoCrash bench-
mark on the empty traffic condition with and without the
auxiliary semantic segmentation loss.

Task Town Weather IA LBC Ours

Empty
train train

95.02 97.15 98.82
Regular 94.72 96.38 100.00
Dense 82.93 91.35 98.24

Empty
test train

88 .87 92.41 98.91
Regular 84 .09 88.32 94.95
Dense 63 .63 74.84 88.89

Empty
train test

− 79.35 94.25
Regular − 79.20 93.03
Dense − 76.72 95.73

Empty
test test

− 62.47 84.72
Regular − 63.55 88.53
Dense − 44.99 80.75

Table 2: Comparison of the mean route completion rate
on NoCrash. The experimental setup follows Table 2.

5. Action-value Computation

In CARLA, we use a planning horizon of H = 5 to
subsample the trajectories during action-value computation.
At each frame t, we compute and discretize the rewards from
t to t + H − 1 around the ego vehicle state at time t. We
then compute the values and action-values for time t using
backward induction as described in section 3. In ProcGen,
we use H = 30.
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(d) Action-value
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Figure 2: Additional visualization of the computed value function and action-value function for the current frame. Setup
follows figure 3 in the main manuscript.

Task Town Weather Seed1 Seed2 Seed3

Empty
train train

99 99 98
Regular 97 99 100
Dense 86 94 96

Empty
test train

93 92 94
Regular 94 91 89
Dense 74 67 74

Empty
train test

92 84 90
Regular 92 92 90
Dense 70 80 84

Empty
test test

78 78 78
Regular 86 82 82
Dense 60 60 66

Table 3: Success rates of our method on 3 evaluation random
seeds. Setup follows table 2 in the main manuscript.

6. CARLA Controls

In CARLA, to ensure a smooth control output from the
discretized action space, we assume independence between
steering and throttle, and use their softmax probabilities
to compute smooth steering and throttle values. In par-
ticular, the sensorimotor policies predict logits log πs ∈
RNs , log πt ∈ RNt , log πb ∈ R. During training we model
log π(s, t, Ib) = (1− Ib)(log πs(s) + log πt(t)) + Ib log πb.

During testing, we use

s =

Ns∑
c

πs(sc)sc

t =

Nt∑
c

πt(tc)sc

b =

{
1, πb >= tb

0, πb < tb

We use tb = 0.5 in all our experiments. In addition, we
apply a bang-bang controller on throttle, i.e we explictly set
the computed throttle to 0 if the vehicle speed exceeds a
predefined threshold.

7. CARLA leaderboard

Following Toromanoff et al. [9], we use a 6 model ensem-
ble to obtain a more stable control for our top leaderboard
submission.

8. Additional ProcGen Details

Similar to CARLA, we discretize the agent state into
NH × NW location bins and Nθ orientation bins. We use
NH = NW = 32, and Nθ = 8. The ConvNet that processes
environment features takes as input a cropped 13×13 region
around the ego-agent in the original 64× 64 RGB observa-
tions. The ConvNet features are concatenated with agent
orientation to predict the next ego-agent’s states under all
discrete action commands.



Train town Test Town
Train Weather Test Weather Train Weather Test Weather

CA SA Empty Regular Dense Empty Regular Dense Empty Regular Dense Empty Regular Dense

× × 87 82 82 60 78 82 85 80 63 68 54 42
× X 97 97 92 78 82 80 92 91 64 66 72 58
X × 100 98 90 92 94 76 90 82 60 78 62 48
X X 98 100 96 90 90 84 94 89 74 78 82 66

Table 4: Comparison of success rate in the NoCrash benchmark under different ablation conditions. CA stands for “camera
augmentation” and SA stands for “speed augmentation”. All ablation models are trained on the same dataset and evaluated on
CARLA 0.9.10. CA models additionally train on two augmented camera views per dataset frame.

Hyperparameter CARLA ProcGen

Batch size 128 128
Learning rate - ego model 1e-2 3e-4
Learnign rate - distillation 3e-4 3e-4
Entropy loss scale (α) 1e-2 1e-2
Segmentation loss scale 5e-2 −

Table 5: Additional hyperparameters.

9. Training Hyperparameters

Table 5 provide a list of training hyperparameters for
reference. In our CARLA experiments we use the following
image augmentations: Gaussian Blur, Additive Gaussian
Noise, Pixel Dropout, Multiply (scaling), Linear Contrast,
Grayscale, ElasticTransformation.
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