
Supplementary Appendix

A Implementation Details

We provide in this part details about our implementations
as well as experiment settings.

A.1 Training Details

Training Data. We use GL3D dataset to generate training
data. GL3D dataset is originally based on 3D reconstruc-
tion of 543 different scenes, including landmarks and small
objects, while in its latest version additional 713 sequences
of internet tourism photos are added.

We sample 1000 pairs for each sequence and filter out
pairs that are either too hard or too easy for training. More
specifically, we use the common track ratio provided by
original dataset and rotation angles between cameras to de-
termine pair difficulty, pairs with common track ratio in
range [0.1, 0.5] and rotation angle in range [6°, 60°] are kept.

We reproject keypoints between images with depth maps
and use reprojection distances to determine ground truth
matches and unmatchable points. More specifically, a key-
point is labeled as unmatchable if its reprojection distances
with all keypoints in the other image are larger than 10 pix-
els, while a pair of keypoints that are mutual nearest after
reprojection and with a reprojection distance lower than 3
pixels are considered ground truth matches. We further fil-
ter out pairs with ground matches fewer than 50.

Our data generation protocol yields around 400k training
pairs in total.

Training Parameters. We use Adam optimizer for training
optimization with learning rate of 10−4. We apply learning
rate decay after 300k iterations with decay rate of 0.999996
until 900k iterations. We block the gradient flow between
initial/refinement stages for the first 140k iterations.

A.2 Network Details

As is done in SuperGlue [3], we apply multi-head atten-
tion mechanism for all weighted attention operations in our
network with head number of 4.

For initial Seeding Module, we apply additional mutual
nearest neighbour check and ratio test to seed correspon-
dences. NMS is also employed in seeding. The radius for
NMS is θ

|α|(|α|−1) Σ
(i,j)∈α×α,i6=j

dij , where α is index set for

all keypoints, dij is distance between keypoint i, j, |.| de-
notes set size, θ is a hyper parameter, which we set as 10−2

for all experiment.
For Reseeding Module, we apply sinkhorn algorithm

with 10 iterations on correlation matrix to obtain assign-
ment matrix. Correspondences with top-k scores on both
dimensions are sampled as seeds. NMS is also applied in
reseeding module.

For the inlier likelihood predictor CN in Seeded GNN,
we use the PointCN structure illustrated in Fig 2 (down).

We set iterations number of Sinkhorn algorithm to 100.

A.3 Experiment Settings

We use OpenCV implementation for SIFT and official
implementation of SuperPoint and ContextDesc. For Con-
textDesc, we use the latest public model (denoted as Con-
textDesc++upright in the official GitHub repository).
YFCC100M. We extract SIFT and ContextDesc with im-
ages in original resolution and resize images so that the
longest dimension is 1600 to extract SuperPoint. We use
OpenCV findEssentialMat and recoverPose functions to re-
cover relative poses with the embedded RANSAC, of which
the threhold is set as 1 pixel under resolution of resized im-
ages. For matching score and precision, we use epipolar
distance of 5× 10−3 to determine inlier matches.
ScanNet. We resize images to [640,480] resolution to ex-
tract keypoints and use same protocol to recover relative
poses, mathing scores and precision as in YFCC100M.
FM-Bench. The original evaluation pipeline of FM-Bench
is based on Matlab and we reimplement it with Python. The
parameter for evaluation is consistent with the original im-
plementation. We use OpenCV findFundamental func-
tion for fundamental matrix estimation and set the threshold
of embedded RANSAC to 1 pixel. Compared with orig-
inal implementation, our evaluation pipeline tends to give
out higher accuracy, especially for wide baseline datasets.
We believe it is due to better performance of OpenCV
findFundamental function and is beneficial for a more
precise evaluation.
Aachen Day-Night. We use the official pipeline and default
parameters for evaluation. We extract upright feature for
both RootSIFT and ContextDesc.

Figure 1. Visualizations of raw putative matches(left), seed correspondences(middle) and matches obtained by SGMNet(right). Note that
even with heavily noisy seeds, SGMNet is capable of discovering underlying patterns, which are leveraged to guided message pass across
keypoints for robust and accurate matching.

B Designs of SGMNet

Despite the effectiveness of SGMNet, we provide our ex-
periment results and analysis on some other potential de-
signs in this part.

Learned Seeding. After obtaining initial nearest neigh-
bour correspondences, we employ a light-weight permuta-
tion invariant Network (architecture illustrated in Fig 2) to
determine each correspondence’s inlier likelihood score, as
is done in previous works [7, 5]. We thus sample corre-
spondences with top-k inlier-score instead of ratio scores as
seeding correspondences.

Results. We report results in Table 1. Although apply-
ing light-weight pointCN block for inlier seeds prediction
slightly increases seeding precision, it’s not enough to bring

CN
(a)

BN
(a)

Relu
Conv1D
(a,b)

CN
(b)

BN
(b)

Relu

Conv1D
(a,b)

PointCN(a,b)

PointCN
(4,64)

PointCN
(64,128)

PointCN
(128,128)

PointCN
(128,64) Sigmoid

PointCN
(64,1)

Figure 2. PointCN structure(down) we use to construct learned
seeding module(top). CN(a)/BN(a) denotes context normaliza-
tion [5]/batch normalization [1] with input of a channels.

AUC M.S. Prec. Prec.(S)Designs @5° @10° @20°
Learned Seeding 62.80 72.55 81.09 17.25 85.15 51.22

DiffPool 50.85 60.50 69.68 10.18 61.52 -
ISA 52.11 61.44 70.03 10.65 63.24 -

SGMNet 62.72 72.52 81.48 17.08 86.08 39.24
NN+RT 49.07 58.76 68.58 10.05 56.38 -

Table 1. Evaluation Results on YFCC100M using RootSIFT with
different designs. Prec.(S) denotes precision of seed correspon-
dences.

meaningful impacts on the level of pose estimation.
In general, we are open for the possibility to increase

matching quality by introducing more complicated seed-
ing strategies. However, targeting at efficient matching,
our seeding method achieves good balance between perfor-
mance and cost.

The critical component in our method for efficiency mes-
sage passing is essentially pooling of original keypoints. In
this part, we apply two well-studied pooling designs either
in GNN or transformer architecture, namely DiffPool [6]
and Induced Set Attention [2], to image matching task and
evaluate their performance.

DiffPool. As a pooling operation in GNN, DiffPool pre-
dicts assignment matrix based on each node’s embedding
in graph, which is designed to build hierarchical and sparse
graph representation [6]. In OANet [7], DiffUnpool, the
counter part of DiffPool, is proposed to recover node clus-
ters to original size. As an experiment, we apply Diff-
Pool/Unpool to keypoint graph in each image as a substitu-
tion for our proposed attentional pooling. Cross/self atten-
tion [3] will be performed on the pooled clusters for mes-

sage exchange.

Induced Set Attention. Induced set attention(ISA) is first
proposed in Set Transformer [2]. Different from using seed
features as attention bottleneck, ISA adopts a set of learned
fixed features(induced point) as attention pass between set
elements and is only verified on self-attention for sparse in-
put. We subsitute our seed-based attention with ISA. More
specifically, we let the network learned induced points for
both sides and let induced points attend to original key-
points(both cross/self) to perform message pass.

Results. We report evaluation result on YFCC100M. For all
pooling method, we set pooling number to 128 and extract
up to 2k keypoints. As illustrated in Table 1, both DiffPool
and ISA shows only marginal improvements over baselines,
which indicates that applying pooling methods designed for
generic GNN/efficient transformer is not necessarily effec-
tive for image matching tasks, and further prove that our
seed based attentional pooling/unpooling operation is criti-
cal for the success of our method.

C Fast Convergence

The compactness of SGMNet not only contributes to
the cut-down on computation/memory complexity but also
leads to a faster convergence for training. In Fig. 3 we plot
the training curve for both SGMNet and SuperGlue. As
illustrated, SGMNet takes fewer iterations to reach conver-
gence.

Figure 3. Convergence curve.

D Additional Experiment Results

D.1 Impact of Seeding Number

SGMNet requires seeding a set of seed correspondences,
the number of which not only influences our method’s ef-
ficiency but also accuracy. Therefore, it is important to in-
vestigate the impact of seeding number. We carefully con-
duct grid search on YFCC100M with different keypoint and
seeding number.

25

40

55

70

2k 4k 6k 8k

R
ec

al
l@

0
.2

5
m

,
2
°

#Features

(a)

SuperGlue

SGMNet

64 57.95 69.62 72.11 72.80

128 59.11 70.62 72.92 73.76

192 58.51 69.21 73.28 74.01

256 58.61 70.15 73.03 74.18

320 58.61 69.51 72.40 72.93

1k 2k 3k 4k

#Features

(b)

#
S

ee
d
s

Figure 4. The effect of seed number when varing the keypoint
number. Numbers in grids are Exact AUC@20° using RootSIFT.

20 40 60 80 100
65

70

75

80

85

90

95

SGMNet w/ weighted unpooling

SGMNet w/ vanilla unpooling

NN+RT

#Seed Inlier Rate(%)

au
c

20
(%

)

Figure 5. Relationship between pose estimation accuracy and seed
precision. Note SGMNet maintain a high matching quality even
with seed precision of only 20%.

As is illustrated in Fig 4, an approximate proportional re-
lationship between keypoint/seed numbers yields best per-
formance, as too many seeds may deliver less reliable guid-
ance while seeding too few correspondences results in se-
vere information lost.

D.2 Robustness to Seed Noise

To evaluate the robustness of our method w.r.t. potential
false seeds, we conduct experiment on YFCC100M. More
specifically, for each pair we select a set of inlier matches,
which is determined using ground truth, and pad them with
random sampled noise to construct seed correspondences
with different precision. We feed the pre-selected seed cor-
respondences to Seeded GNN instead of applying Seeding
Module.

As is shown in Fig 5, SGMNet maintains high match-

b b

c c

a a

Figure 6. Reconstruction results of vanilla nearest neighbour matching(left) and SGMNet(right). The completeness of reconstruction
is determined by matching quality between some critical frames. In this case, NN matching fails to generate descent correspondences
between tall building(b)/statue(c) and tall building(b)/remains(a), which results in incomplete reconstruction, while SGMNet registered
theses critical frames successfully.

Methods #Registered Images #Sparse Points Mean Rro. Error Mean Track Len. Matching Time Total Time
NN+Ratio+Mutual Check 799 132265 0.58px 11.27 1h 13min 2h 22min

SuperGlue 916 223950 0.95px 10.93 42h 34min 44h 06min
SGMNet 943 276240 1.10px 10.73 5h 37min 7h 56min

Table 2. SfM results for Alamo scene in 1DSFM dataset.

ing quality even with heavily noisy seed correspondences.
It’s noteworthy that for SGMNet without weighted unpool-
ing, the pose estimation accuracy degenerate more rapidly
as seed precision decreases, which indicates lower robust-
ness to seed noise. More visualizations related to noisy seed
and matching results can be seen in Fig 1.

D.3 SfM Experiment

Typical Structure from Motion(SfM) pipeline usually in-
volves extracting keypoints in large number(e.g. 8k) and
matching among hundreds/thousands of images to obtain
ultra accurate poses and more complete reconstructions. In
this section, we embed different matching methods into
COLMAP SfM pipeline for comparison. We reconstruct
challenging Alamo scene from 1DSFM [4], which involves
2915 images taken under very different illumination condi-
tions. 8k RootSIFT features are extracted for each image
and we set sinkhorn iterations to 10 for both SGMNet and
SuperGlue. We use a GTX 1080 GPU to preform matching
sequentially. Apart from common statistics for reconstruc-
tion, we also report time consumption for matching and the

whole SfM pipeline.
As shown in Tab 2, both SuperGlue and SGMNet pro-

duces much more complete reconstruction compared with
vanilla NN matching and heuristic pruning. However, Su-
perGlue largely lengthen the time for whole SfM pipeline,
while our method retains the matching time to a feasible
level.

E More Visualizations
See Fig. 7 and Fig. 1.

Figure 7. More visualizations.

References

[1] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-

ate shift., 2015. 2

[2] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-

work for attention-based permutation-invariant neural net-
works. In ICML, 2019. 2, 3

[3] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature match-
ing with graph neural networks. In CVPR, 2020. 1, 2

[4] Kyle Wilson and Noah Snavely. Robust global translations
with 1dsfm. In ECCV, 2014. 4

[5] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,
Mathieu Salzmann, and Pascal Fua. Learning to find good
correspondences. In CVPR, 2018. 2

[6] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
Will Hamilton, and Jure Leskovec. Hierarchical graph rep-
resentation learning with differentiable pooling. In NeurIPs,
2018. 2

[7] Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei
Zhou, Tianwei Shen, Yurong Chen, Long Quan, and Hongen
Liao. Learning two-view correspondences and geometry us-
ing order-aware network. In ICCV, 2019. 2

