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1. Per-scene optimization.

More details. As described in the paper Sec. 3.4, we
optimize the predicted neural encoding volume with the
MLP decoder for each scene to achieve final high-quality
fine-tuning results. The neural encoding volume with the
MLP is an effective neural representation of a radiance
field. All fine-tuning results (and also NeRF’s optimization
comparison results) are generated using a single NVIDIA
RTX 2080Ti GPU. On this hardware, our 15min fine-tuning
corresponds to 10k training iterations and NeRF’s 10.2h
optimization corresponds to 200k training iterations.

Our neural encoding volume is reconstructed in the
frustrum of the reference view; it thus only covers the scene
content in the frustrum. As a result, for a large scene,
artifacts may appear when some parts that are not located
in the frustrum show up in the novel view. Therefore, we
extend the neural encoding volume by padding its boundary
voxels when fine-tuning on some large scenes. This can
address the out-of-frustrum artifacts, though the padding
voxels are not well reconstructed initially by the network
and may require longer fine-tuning to achieve high quality.

As described in the paper, we do not apply two-stage
(coarse and fine) ray sampling as done in NeRF [2]. We
uniformly sample points (with per-step small randomness)
along each marching ray. We find that 128 points are
enough for most scenes and keep using 128 point for our
across-scene training on the DTU dataset. When fine-
tuning, we increase the number of points to 256 for some
challenging scenes.

Optimization progress. We have demonstrated in the
paper that our 15min fine-tuning results of DTU and LLFF
dataset are comparable with the 10.2h optimization results
of NeRF [2]. We now show comparisons of the per-
scene optimization progress between our fine-tuning and
NeRF’s from-scratch optimization. Note that, thanks to the
strong initial reconstruction predicted by our network, our
fine-tuning is consistently better than NeRF’s optimization
through 200k training iterations. As mentioned, our each
18min result corresponds to the result at the 12k-th training
iteration, which is at the very early stage in the curves;
however, as demonstrated, it can be already better than
the NeRF’s result after 48k iterations, corresponding to the

10.2h optimization result shown in the paper. Moreover,
while our 15min results are already very good, our results
can be further improved over more iterations, if continuing
optimizing the radiance fields.

Layer k s d chns input
CBR2D0 3 1 1 3/8 I
CBR2D1 3 1 1 8/8 CBR2D0

CBR2D2 5 2 2 8/16 CBR2D1

CBR2D3 3 1 1 16/16 CBR2D2

CBR2D4 3 1 1 16/16 CBR2D3

CBR2D5 5 2 2 16/32 CBR2D4

CBR2D6 3 1 1 32/32 CBR2D5

T 3 1 1 32/32 CBR2D6

CBR3D0 3 1 1 32 + 9/8 T, I
CBR3D1 3 2 1 8/16 CBR3D0

CBR3D2 3 1 1 16/16 CBR3D1

CBR3D3 3 2 1 16/32 CBR3D2

CBR3D4 3 1 1 32/32 CBR3D3

CBR3D5 3 2 1 32/64 CBR3D4

CBR3D6 3 1 1 64/64 CBR3D5

CTB3D0 3 2 1 64/32 CTB3D0 + CBR3D4

CTB3D1 3 2 1 32/16 CTB3D1 + CBR3D2

CTB3D2 3 2 1 16/8 CTB3D2 + CBR3D0

PE0 - - - 3/63 x
LR0 - - - 8+12/256 f, c
LR1 - - - 63/256 PE

LRi+1 - - - 256/256 LRi · LR0

σ - - - 256/1 LR6

PE1 - - - 3/27 d
LR7 - - - 27+256/256 PE1, LR6

c - - - 256/3 LR7

Table 1. From top to bottom: 2D CNN based feature extraction
model, 3D CNN based neural encoding volume prediction model
and MLP based volume properties regression model (i ∈
[1, ..., 5]). k is the kernel size, s is the stride, d is the
kernel dilation, and chns shows the number of input and output
channels for each layer. We denote CBR2D/CBR3D/CTB3D/LR
to be ConvBnReLU2D, ConvBnReLU3D, ConvTransposeBn3D
and LinearRelu layer structure respectively. PE refers to the
positional encoding as used in [2].



2. Network Architectures
We show detailed network architecture specifications of

our 2D CNN (that extracts 2D image features ), 3D CNN
(that outputs a neural encoding volume), and MLP decoder
(that regresses volume properties) in Tab 1.

3. Limitations.
Our approach generally achieves fast radiance field

reconstruction for view synthesis on diverse real scenes.
However, for highly challenging scenes with high
glossiness/specularities, the strong view-dependent shading
effects can be hard to directly recovered via network
inference and a longer fine-tuning process can be required
to fully reconstruct such effects. Our radiance field
representation is reconstructed within the frustrum of the
reference view. As a result, only the scene content seen
by the reference view is well reconstructed and initialized
for the following fine-tuning stage. Padding the volume (as
discussed earlier) can incorporate content out of the original
frustrum; however, the unseen parts (including those that
are in the frustrucm but are occluded and invisible in the
view) are not directly recovered by the network. Therefore,
it is challenging to use a single neural encoding volume to
achieve rendering in a wide viewing range around a scene
(like 360◦ rendering). Note that, a long per-scene fine-
tuning process with dense images covering around the scene
can still achieve 360◦ rendering, though it can be as slow
as training a standard NeRF [2] (or Sparse Voxel Fields
[1] that is similar to our representation) to recover those
uninitialized regions in the encoding volume. Combining
multiple neural encoding volumes at multiple views can be
an interesting future direction to achieve fast radiance field
reconstruction with larger viewing ranges.

4. Per-scene breakdown.
We show the pre-scene breakdown analysis of the

quantitative results presented in the main paper for the three
dataset (Realistic Synthetic, DTU and LLFF).

These results are consistent with the averaged results
shown in the paper. In general, since the training set consists
of DTU scenes, all three methods can work reasonably well
on the DTU testing set. Our approach can outperform
PixelNeRF [4], when using the same three-image input,
and achieve higher PSNR and SSIM and lower LPIPS.
Note that, as mentioned in the paper, the implementation
of IBRNet [3] is trained and tested with 10 input images
to achieve its best performance as used in their paper.
Nonetheless, our results with three input images are still
quantitatively comparable to the results of IBRNet with 10
input images on the DTU testing set; IBRNet often achieves
better PSNRs while we often achieve better SSIMs and
LPIPSs.

DTU Dataset
Scan #1 #8 #21 #103 #114

PSNR↑
PixelNeRF 21.64 23.70 16.04 16.76 18.40
IBRNet 25.97 27.45 20.94 27.91 27.91
Ours 26.96 27.43 21.55 29.25 27.99
NeRF10.2h 26.62 28.33 23.24 30.40 26.47
IBRNetft−1h 31.00 32.46 27.88 34.40 31.00
Oursft−15min 28.05 28.88 24.87 32.23 28.47

SSIM↑
PixelNeRF 0.827 0.829 0.691 0.836 0.763
IBRNet 0.918 0.903 0.873 0.950 0.943
Ours 0.937 0.922 0.890 0.962 0.949
NeRF10.2h 0.902 0.876 0.874 0.944 0.913
IBRNetft−1h 0.955 0.945 0.947 0.968 0.964
Oursft−15min 0.934 0.900 0.922 0.964 0.945

LPIPS ↓
PixelNeRF 0.373 0.384 0.407 0.376 0.372
IBRNet 0.190 0.252 0.179 0.195 0.136
Ours 0.155 0.220 0.166 0.165 0.135
NeRF10.2h 0.265 0.321 0.246 0.256 0.225
IBRNetft−1h 0.129 0.170 0.104 0.156 0.099
Oursft−15min 0.171 0.261 0.142 0.170 0.153

Table 2. Quantity comparison on five sample scenes in the DTU
testing set.

More importantly, as already shown in paper, when
testing on novel datasets, our approach generalizes
significantly better than PixelNeRF and IBRNet, leading
to much better quantitative results on the Synthetic Data
and the Forward-Facing dataset. We also provide detailed
per-scene quantitative results for the three testing datasets
in Tab. 3-10. Please also refer to the supplementary video
for video comparisons.
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Chair Drums Ficus Hotdog Lego Materials Mic Ship
PSNR↑

PixelNeRF 7.18 8.15 6.61 6.80 7.74 7.61 7.71 7.30
IBRNet 24.20 18.63 21.59 27.70 22.01 20.91 22.10 22.36
Ours 23.35 20.71 21.98 28.44 23.18 20.05 22.62 23.35
NeRF 31.07 25.46 29.73 34.63 32.66 30.22 31.81 29.49
IBRNetft−1h 28.18 21.93 25.01 31.48 25.34 24.27 27.29 21.48
Oursft−15min 26.80 22.48 26.24 32.65 26.62 25.28 29.78 26.73

SSIM↑
PixelNeRF 0.624 0.670 0.669 0.669 0.671 0.644 0.729 0.584
IBRNet 0.888 0.836 0.881 0.923 0.874 0.872 0.927 0.794
Ours 0.876 0.886 0.898 0.962 0.902 0.893 0.923 0.886
NeRF 0.971 0.943 0.969 0.980 0.975 0.968 0.981 0.908
IBRNetft−1h 0.955 0.913 0.940 0.978 0.940 0.937 0.974 0.877
Oursft−15min 0.934 0.898 0.944 0.971 0.924 0.927 0.970 0.879

LPIPS ↓
PixelNeRF 0.386 0.421 0.335 0.433 0.427 0.432 0.329 0.526
IBRNet 0.144 0.241 0.159 0.175 0.202 0.164 0.103 0.369
Ours 0.282 0.187 0.211 0.173 0.204 0.216 0.177 0.244
NeRF 0.055 0.101 0.047 0.089 0.054 0.105 0.033 0.263
IBRNetft−1h 0.079 0.133 0.082 0.093 0.105 0.093 0.040 0.257
Oursft−15min 0.129 0.197 0.171 0.094 0.176 0.167 0.117 0.294

Table 3. Quantity comparison on the Realistic Synthetic dataset.

Fern Flower Fortress Horns Leaves Orchids Room Trex
PSNR↑

PixelNeRF 12.40 10.00 14.07 11.07 9.85 9.62 11.75 10.55
IBRNet 20.83 22.38 27.67 22.06 18.75 15.29 27.26 20.06
Ours 21.15 24.74 26.03 23.57 17.51 17.85 26.95 23.20
NeRF10.2h 23.87 26.84 31.37 25.96 21.21 19.81 33.54 25.19
IBRNetft−1h 22.64 26.55 30.34 25.01 22.07 19.01 31.05 22.34
Oursft−15min 23.10 27.23 30.43 26.35 21.54 20.51 30.12 24.32

SSIM↑
PixelNeRF 0.531 0.433 0.674 0.516 0.268 0.317 0.691 0.458
IBRNet 0.710 0.854 0.894 0.840 0.705 0.571 0.950 0.768
Ours 0.638 0.888 0.872 0.868 0.667 0.657 0.951 0.868
NeRF10.2h 0.828 0.897 0.945 0.900 0.792 0.721 0.978 0.899
IBRNetft−1h 0.774 0.909 0.937 0.904 0.843 0.705 0.972 0.842
Oursft−15min 0.795 0.912 0.943 0.917 0.826 0.732 0.966 0.895

LPIPS ↓
Fern Flower Fortress Horns Leaves Orchids Room Trex

PixelNeRF 0.650 0.708 0.608 0.705 0.695 0.721 0.611 0.667
IBRNet 0.349 0.224 0.196 0.285 0.292 0.413 0.161 0.314
Ours 0.238 0.196 0.208 0.237 0.313 0.274 0.172 0.184
NeRF10.2h 0.291 0.176 0.147 0.247 0.301 0.321 0.157 0.245
IBRNetft−1h 0.266 0.146 0.133 0.190 0.180 0.286 0.089 0.222
Oursft−15min 0.253 0.143 0.134 0.188 0.222 0.258 0.149 0.187

Table 4. Quantity comparison on the Forward Facing dataset.


