
Supplementary Material for “Multimodal Clustering Networks for
Self-supervised Learning from Unlabeled Videos”

This appendix is organized as follows:
A. Method description and comparisons.
B. Details on experimental setups.
C. Additional experiment results.
D. Quantitative experimental results for text-to-video re-
trieval and temporal action localization.

A. Method description and comparisons.

A.1. Salient features of the MCN method

To highlight various aspects of our proposed MCN
method, we compare our method with another notable multi-
modal cluster method: XDC [2].
Goal of the model. While XDC’s goal is to learn represen-
tations for each modality, with the MCN method, we try
to learn a joint representation across modalities. The two
approaches are hence complementary, given that they tar-
get different tasks. In addition, XDC aims to learn feature
backbones from scratch since these feature backbones will
be applied to single modality downstream tasks. In contrast,
we start from pre-trained feature extractors and aim to learn
projection heads across domains to derive a joint space from
the three modalities.
Joint space of representation. Based on the formulation of
XDC, pseudo-labels from one modality serve as prediction
targets of another. Since the prediction target for the visual
and audio instances are different, the model will not learn
a joint space across modalities. The paper also proposed
a CDC method where the prediction target of visual and
audio instances are the same. However, it is not evaluated
on multimodal tasks.
Combining contrastive learning. While XDC uses only
the clustering loss, we combine multiple losses together. We
find the contrastive loss to be crucial in multimodal tasks
since it pulls the instances across modalities that co-occur
together. In general, this supervision is crucial in most mul-
timodal pre-training strategies.
Use of different modalities Since our goal is to learn a joint
space across three modalities, our motivation for using audio
is slightly different from XDC. XDC uses audio and video
as complimentary learning signals for self-supervised predic-
tion targets. On the other hand, we find audio as a modality

that bridges the gap between video and text, since audio and
video preserve fine-grained information. The text modality
represents a more abstract concept, distilled from the audio
signal using ASR. Hence, we find learning from the three
modalities to be beneficial.

B. Experiment Details
B.1. Implementation details

We use an Adam optimizer [11] with a learning rate of
1e−4 and cosine learning rate schedule [16]. The model is
trained for 30 epochs on four V100 GPUs over a period of
about two days. Various hyperparameters in our experiments
are set as follows: margin hyperparameter δ = 0.001 , and a
batch size of B = 4096 video clips and cluster size is set to
be 256.

B.2. Clustering metrics

To better evaluate our learned features, we use the k-
means clustering algorithm and calculate various clustering
metrics based on ground-truth labels on the CrossTask [22]
and MiningYouTube [12] tasks. In this case, the number of
clusters k, also corresponds to the number of possible steps
assigned to the temporal action localization task for each
video during test time.

We follow the evaluation protocol and notations used in
[4] and report performance based on the following standard
clustering metrics: normalized mutual information (NMI)
[19], adjusted rand index (ARI) [10], and accuracy (Acc).
These results are obtained after matching the estimated k-
means pseudo-labels to the ground truth targets using the
Kuhn–Munkres/Hungarian algorithm [13]. We also report
the mean entropy per cluster :

⟨H⟩ = 1

K

∑
k∈K

H(p(y|ŷk = k)), (A)

where ŷ corresponds to the psuedo-labels generated by clus-
tering and y relates to the ground-truth labels. In this formu-
lation p(y|ŷk = k) denotes the distribution of ground-truth
labels that fall in the generated clusters k, while H(U) repre-
sents the entropy given as −

∑|U |
i=1 P (i) log(P (i)). In ideal

conditions, the perfect mean entropy will be zero.
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Figure A: Comparison of different clustering pipelines. We investigate different clustering pipelines in replace of the clustering
loss in our main paper. (a) Performs a sinkhorn clustering folloing a swap prediction. The loss was calculated between the
clustered features and pseudo labels. (b) Replaces the swap prediction to joint prediction by performing the clustering on the
mean feature. The loss was calculated by the mean pseudo label and the projected feature in Figure 3a. (c) Performs K-means
along with swap prediction. (d) Performs K-means on the mean features and performs joint prediction.

Method NMI ↑ ARI ↑ Acc. ↑ ⟨H⟩ ↓ ⟨pmax⟩ ↑

Random 0.4 0.4 8.6 2.3 25.5
Miech et al. [15] 72.9 45.4 59.8 0.44 79.5
MIL-NCE* [14] 73.1 46.8 60.6 0.37 77.9

MCN 75.8 48.0 61.7 0.40 80.8

Table A: Performance on various clustering metrics for the
MiningYouTube task

We also report the the mean maximal purity per cluster,

⟨pmax⟩ =
1

K

∑
k∈K

max(p(y|ŷk = k)), (B)

In ideal conditions, the perfect mean purity will be 100%.
By using the various metrics described above, the clus-

tering result on MiningYoucook dataset was shown in Table
B. The overall results show a similar pattern with the experi-
ment shown in the main paper using CrossTask dataset.

B.3. Clustering ablation explanation

In this ablation study, we investigate different clustering
pipelines. Here, we break down our results into several
categories and provide an analysis for various clustering
methods, different prediction targets, and several kinds of
pseudo-labels.

Clustering method. The goal of this analysis is to create
various kinds of pseudo-labels as prediction targets. If a
pseudo-label can be thought of as a certain semantic rep-
resentation of a cluster, two instances that have the same
pseudo-label, can then be considered as semantically sim-
ilar. The K-means method follows the deep clustering [7]
approach which utilizes K-means clustering to create pseudo
labels as prediction targets. These targets are then used for
single modality learning on ImageNet [18]. The Sinkhorn
clustering method follows the SeLa [5] technique that uti-
lized a trainable network to replace the K-means clustering
for generating pseudo-labels. The method also applies an
optimal transport sinkhorn algorithm [9] to guarantee uni-
form distribution over different cluster labels, which in turn
prevents the learnable clustering network (2 layers MLP)
from learning a degenerated solution. More details of this
sinkhorn clustering approach can be found in [5, 8].
Prediction Target. We investigate two sources of pseudo-
labels as prediction targets. In the first approach, the swap
prediction utilizes a pseudo-label created from a different
domain as a prediction target. As shown in the yellow box of
Figure A (c), pseudo-labels from the audio (orange) and text
(green) domains are used as prediction targets for the visual
feature (blue). This mechanism is similar to XDC [2] except
that we perform this approach on projected features a in com-
mon space. In the joint prediction method, a mean feature



Method MMS MMS + Clus MMS + Clus + Recon

Aligned ↑ 0.740 0.858 0.873
Misaligned ↓ 0.327 0.279 0.260

Table B: Cosine similarity of aligned and misaligned instances.

from the features of three modalities is first computed as a
multimodal feature representation. Later, its pseudo-label
will be the prediction target for the three separate feature
instances and will be used to guide the features to be close
across modalities and semantics. As shown in Figure A (d),
the pseudo-label of the mean feature is used as the prediction
target for features of each of the three modalities.
Label type. We have two kinds of labels: hard labels that
represent discrete labels and soft labels that represent con-
tinuous, probabilistic labels. Since K-means assigns each
instance to one of the centroids, it will only produce hard
labels. The outputs from the Sinkhorn clustering are from a
learnable network. We can use the softmax operator to trans-
fer these outputs into probabilities over different labels (soft)
or use the arg-max function to derive discrete labels (hard).
When we perform soft-label prediction over the Sinkhorn
pipeline as shown in (a), it will be similar to Swav [8], but we
perform this over multiple modalities and treat the different
modalities as a kind of data augmentation.

B.4. Dataset and computational resources used in
each methods

To better compare between different methods and set-
tings, we specify various datasets used to construct each of
the baselines in Tables G and H. Methods with pre-trained
feature extractors were trained on ImageNet (ImNet), Kinet-
ics (K400), or Visual Genome (VG). Large-scale datasets
such as HowTo100M (HT) and AudioSet (AS) are used
for self-supervised pre-training. ActBERT [21] uses region
features from a faster R-CNN, which is pre-trained on VG
to better localize actions in CrossTask. We also include
the computation resource and training time of each method.
Note that methods [1, 14] with trainable backbones (TR)
require 32 or more TPUs and usually perform better. For the
reproduced *MIL-NCE method, we use code from [15] and
apply the loss of [14] from their Github repo.

C. Additional experiments

C.1. Dealing with miss-alignment across modalities

To quantify the alignment discrepancy across modalities,
we first consider the pairwise MMS loss for each modality
combination: AT, AV, and VT (V: video, A: audio, T: text).
The loss starts equally for all combinations from (16.3, 16.8,
16.4) and decreases to AT=2.4, AV=8.8, VT=10.8 (epoch
10). The AT loss is the lowest since the text was generated

YouCook2 MSRVTT

Method Mod R@1 R@5 R@10 R@1 R@5 R@10

MMS T−→V 7.4 20.0 29.3 8.8 23.2 32.2
MIL-NCE* T−→V 8.1 23.3 32.3 8.4 23.2 32.4
Ours T−→V 8.6 24.1 33.4 9.6 23.4 32.1

MIL-NCE* + audio A−→V 16.2 36.6 43.7 13.2 28.4 33.3
Ours A−→V 19.4 41.3 50.9 14.8 30.1 39.0

NCE T−→VA 14.5 32.1 39.2 8.8 24.1 33.7
MIL-NCE* + audio T−→VA 15.1 31.9 40.0 9.0 23.3 33.0
MMS T−→VA 16.1 33.9 43.7 9.5 23.3 32.9
Ours T−→VA 18.1 35.5 45.2 10.5 25.2 33.8

Table C: Comparison of retrieval across different modalitites.

from an ASR system, followed by AV since both signals
are synchronized, which is relevant for object sounds like
sizzling or chopping, and the largest gap can be found for
VT pairs. Hence, introducing audio enables us to bridge
this gap. We hypothesize that the clustering loss implicitly
compensates for this misalignment. To show this effect, we
sample V/A/T triplets from the YouCook2 dataset, gener-
ate misaligned instances by randomly replacing instances,
and compare their cosine similarity to its mean multimodal
embedding as in Eq.4 (see Tab. B, columns compare mod-
els from the ablation study). With the proposed clustering,
aligned instances are closer to the mean embedding while
misaligned are further away (as desired). Therefore, the
clustering step in training could compensate/correct for the
MMS loss, which always pulls together true instances, even
if they are misaligned. With the proposed clustering, aligned
instances are closer to the mean embedding while misaligned
are further away, because the contrastive loss pulls every pair
no matter the similarity between the instances. In the clus-
tering step, for the aligned pairs, modalities will converge
better while misaligned pairs will stay apart.

C.2. Ablation of modalities.

We perform ablation experiments on the use of modalities
in Table C. From these experiments we find audio informa-
tion to be crucial in bridging the gap between video and text
while learning a joint space across the three modalities. The
improvement on MSR-VTT is not significant compared to
Youcook2. We attribute this performance difference to the
domain gap between the various datasets. Both HowTo100M
and Youcook are based on instructional videos where the
text modality has a strong correlation to the video and au-
dio modalities. In HowTo100M, the text is based on ASR
transcripts. In Youcook2 and MSR-VTT, the query texts
are hand-annotated captions. While Youcook2 captions de-
scribe single cooking steps, MSR-VTT captions are general
descriptions of the scene, with captions. These captions are



UCF-101 HMDB
Method Top-1 Top-5 Top-1 Top-5

Brattoli et al. [6] 37.6 62.5 26.9 49.8

MCN (ours) 33.0 62.3 20.9 48.4
MCN-actions (ours) 33.9 63.7 22.5 51.5

Table D: Zero-shot action recognition performance on the
UCF-101 and HMDB datasets. MCN-actions is the MCN
method, which has been “fine-tuned” on a subset of the
HowTo100M dataset which contains action-related videos.

YouCook2

Method Mod Model FT R@1 R@5 R@10 Median R

Random - - 0.03 0.15 0.3 1678
Miech [15] VT R152+RX101 Y 8.2 24.5 35.3 24
MCN (ours) VT R152+RX101 Y 11.3 28.2 38.4 20
MCN (ours) VAT R152+RX101 Y 28.2 53.0 63.7 5

Table E: Comparison of text-to-video retrieval systems on
finetune setting. FT indicates if it is finetuned on the down-
stream dataset.

YouCook2 MSRVTT

Cluster size k R@1 R@5 R@10 Median R R@1 R@5 R@10 Median R

64 17.8 34.7 43.4 17 10.1 25.3 34.1 27
128 17.3 34.8 44.2 19 10.5 24.5 33.5 29
256 18.1 35.5 45.2 16 10.5 25.2 33.8 27
512 18.3 35.3 44.4 19 10.4 24.6 33.5 26.5

1024 17.9 34.6 43.5 17 9.4 25.8 34.6 25

Table F: Comparison of text-to-video retrieval systems on
different number of cluster size in K-means

often not close to instructional ASR and also less related to
what is being said in the audio.

C.3. Zero-Shot Action Recognition

We also test our method’s performance for the down-
stream task of zero-shot action recognition. For these experi-
ments, we follow the evaluation protocol of [6] and test on
the full UCF-101 and HMDB datasets. We present the top-1
and top-5 accuracies on both datasets in Table D. Although
MCN is trained using instructional videos, we find that the
joint video/text space it learns is sufficient for the task of
zero-shot action recognition. Furthermore, our method can
be further improved by training on action-related videos; by
removing various video categories - ’food and entertaining’,
’computers and electronics’, ’cars and other vehicles’, ’home
and garden’, and ’health’ and training on a subset of the
HowTo100M dataset, we find MCN is able to achieve state-
of-the-art Top-5 accuracy on both datasets. The baseline,
[6], is a method designed specifically for zero-shot action

Figure B: Audio length used in inference on CrossTask.

recognition and is trained using labeled action videos from
Kinetics-700, leading to strong top-1 accuracy.

C.4. CrossTask specific results.

We break down the consolidated performance result re-
ported in the main paper on CrossTask and show results
corresponding to each specific task in Table I. We observe
that our model shows a very different yet often improved
performance pattern, compared to the visual-only features
used in [15] and [22]. We attribute this behavior to varying
levels of information provided by the audio modality in each
setting.

C.5. Finetune results

We show our model’s performance on the finetune setting
in Table E, which means we also train on an additional
training set provided by the Youcook [20] dataset. Although
the finetune setting, which requires ground-truth labels, isn’t
our main focus, we obtain significant improvement over the
current baseline.

C.6. Different number of clusters

Table F shows the results using different number of cluster
sizes for K-means. The result shows similar performance
across different datasets and evaluation metrics.

C.7. Audio length used in inference.

We test the audio length needed for effective inference
performance on CrossTask. As shown in Fig B, we find
that using 8 seconds (4 seconds before and after) of audio
leads to the best results. Given that some steps are very short
(less than 3 seconds), this result also shows that using very
long audio segments can distract the model from predicting
a correct localization step.

D. Qualitative analysis
To further understand the proposed MCN model’s im-

proved performance, we also perform a qualitative analysis



YouCook2 MSRVTT

Method Mod Model Dataset Com Time TR R@1 R@5 R@10 R@1 R@5 R@10

Random - - 0.03 0.15 0.3 0.01 0.05 0.1
Miech [15] VT R152+RX101 HT+ImNet+K400 1 V100 1 day N 6.1 17.3 24.8 7.2 19.2 28.0
MDR [3] VT R152+RX101 HT+ImNet+K400 1 V100 1 day N - - - 8.0 21.3 29.3
MIL-NCE* [14] VT R152+RX101 HT+ImNet+K400 4 V100 2 days N 8.1 23.3 32.3 8.4 23.2 32.4
MCN (ours) VAT R152+RX101 HT+ImNet+K400 4 V100 2 days N 18.1 35.5 45.2 10.5 25.2 33.8

MDR [3] VT R152 HT+ImNet+K400 1 V100 1 day N - - - 8.4 22.0 30.4
ActBERT [21] VT R101+Res3D HT+VG+K400 N 9.6 26.7 38.0 8.6 23.4 33.1
SSB [17] VT R(2+1)D-34+R152 HT 8 V100 1 day N - - - 8.7 23.0 31.1

MMV FAC [1] VAT TSM-50x2 HT+AS 32 TPU 3 days Y 11.7 33.4 45.4 9.3 23.0 31.1
MIL-NCE [14] VT I3D-G HT 64 TPU 3 days Y 11.4 30.6 42.0 9.4 22.0 30.0
MIL-NCE [14] VT S3D-G HT 64 TPU 3 days Y 15.1 38.0 51.2 9.9 24.0 32.4

Table G: Comparison of text-to-video retrieval systems. Mod indicates modality used, where V: video, A: audio, T: text. HT:
HowTo100M. VG: Visual Genome. AS: AudioSet. Com stands for computational resource. Time indicates the training time.
TR indicates if a trainable backbone is used or not.

CrossTask MYT

Method Mod Model Dataset Com Time TR Recall IOD IOU Recall IOD IOU

CrossTask [22] VT R152+I3D CrossTask N 22.4 - - - - -
CrossTask [22] VT R152+I3D CrossTask N 31.6 - - - - -
Mining: GRU [12] VT TSN MiningYouTube N - - - - 14.5 7.8
Mining: MLP [12] VT TSN MiningYouTube N - - - - 19.2 9.8

Miech [15] VT R152+RX101 HT+ImNet+K400 1 V100 1 day N 33.6 26.6 17.5 15.0 17.2 11.4
MIL-NCE* [14] VT R152+RX101 HT+ImNet+K400 4 V100 2 days N 33.2 30.2 16.3 14.9 26.4 17.8
MCN (ours) VAT R152+RX101 HT+ImNet+K400 4 V100 2 days N 35.1 33.6 22.2 18.1 32.0 23.1

ActBERT [21] VT R101+Res3D HT+K400 N 37.1 - - - - -
ActBERT [21] VT + Faster R-CNN HT+VG+K400 N 41.4 - - - - -

MIL-NCE [14] VT I3D-G HT 64 TPU 3 days Y 36.4 - - - - -
MIL-NCE [14] VT S3D-G HT 64 TPU 3 days Y 40.5 - - - - -

Table H: Evaluation of temporal action localization systems.
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CrossTask [22] 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4
Supervised [22] 19.1 25.3 38.0 37.5 25.7 28.2 54.3 25.8 18.3 31.2 47.7 12.0 39.5 23.4 30.9 41.1 53.4 17.3 31.6
Miech et al. [15] 33.5 27.1 36.6 37.9 24.1 35.6 32.7 35.1 30.7 28.5 43.2 19.8 34.7 33.6 40.4 41.6 41.9 27.4 33.6

MCN 25.5 31.1 39.7 32.7 35.4 36.8 29.0 40.0 28.4 33.8 45.7 27.5 36.1 34.9 39.6 42.6 43.0 29.1 35.1

Table I: Action step localization results on CrossTask.



Figure C: Temporal action localization example from the first minute of the video ”Vegan Blueberry Quinoa Pancakes” in the
MiningYouTube dataset. Given the video and the action step sequence, the goal is to align the step temporal boundaries.

Figure D: Text-to-video retrieval examples. The retrieved video clips show a similar pattern.

with the model’s temporal action localization results on the
MiningYoutube task. One interesting observation is shown
in Figure C. We observed that our model performs well in
distinguishing action steps from the background scenes. We
attribute this improvement to the proposed clustering compo-
nent, which we observe has separated the background frames
from various action classes. Background class instances are
often placed as outliers with respect to the various action step
clusters. In Figure D, we show more examples on text-to-
video retrieval. The retrieved video segments show similar
semantics.
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