
7. Appendix

7.1. Attention Mechanism

Attention mechanisms such as self- and co-attention are
permutation-equivariant feature aggregation techniques that
have proliferated in natural language processing and other
set-based deep learning applications [53]. Given a bag-like
data structure X 2 RM2dk containing of dk-dim embed-
dings with bag size M , the self-attention function uses X as
the query Q, key K and value V matrices to learn pairwise
relationships aij between embeddings qi 2 Q, kj 2 K, in
which aij is a score that measures how much the key kj at-
tends to the query qi. In computing attention scores for all
xi 2 Q, we define the self-attention matrix A 2 RM⇥M as:
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in which the softmax operator is applied row-wise to nor-
malize scores between 0 and 1. Using the computed at-
tention scores A, we can update the embeddings in bV as
a weighted sum of surrounding embeddings in the bag
as context, in which the attention weights are defined by
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7.2. Survival Analysis

Preliminaries: Survival outcome prediction is an ordi-
nal regression task that models time-to-event distributions,
where the outcome of the event is not always observed (e.g.
- right censored) [13]. In observational studies that examine
overall survival in cancer patients, a censored event would
result from last known patient follow-up, while an uncen-
sored event would be observed patient death.

Following our notation in § 3.1, let X represent pa-
tient data, tos 2 R+ be overall survival time (in months),
c 2 {0, 1} be right uncensorship status (death observed) in
a single triplet observation in a dataset {Xi, ti,os, ci}i=1. In
addition, let T be a continuous random variable for overall
survival time, the survival function fsurv(T � t|X) mea-
sure the probability of patient X survive longer than a dis-
crete time point t, and the hazard function fhazard(T = t |

T � t,X) measure the probability of patient death instan-
taneously at t, defined as:

fhazard(T = t) = lim
@t!0
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@t

which can be used to estimate fsurv by integrating over of
fhazard. The most common method for estimating the hazard
function is the Cox Proportional Hazards (CoxPH) model,
in which fhazard is parameterized as an exponential linear

function �(t|x) = �0(t)e✓X , where �0(t) is the baseline
hazard and ✓ are model parameters that describe how the
hazard varies with features X [12]. Using deep learning,
✓ is the last hidden layer in a neural network, and can be
optimized using Stochastic Gradient Descent with the Cox
partial log-likelihood [58]:
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where U is the set of uncensored patients in the mini-batch,
and Ri is the set of patients in the mini-batch whose sur-
vival or last follow-up is later than tobs,i for patient Xi. In
using the Cox partial log-likelihood in supervising deep sur-
vival models, a notable limitation is that the loss function is
mini-batch dependent, as the partial log-likelihood is sim-
ilar to a contrastive loss that depends on computing a loss
term for each sample w.r.t. to ”negative targets” / ”at-risk”
samples in Ri. However, in training with gigapixel WSIs,
training with batch sizes greater than 1 is challenging due
to: 1) space complexity of large bags, 2) variable bag sizes.
Moreover, the Cox partial log-likelihood places additional
strong assumptions in that all samples have the same base-
line hazard function.
Weak Supervision with Limited Batch Sizes: A sec-
ond approach to survival prediction using deep learning
is to consider discrete time intervals and model each in-
terval using an independent output neuron. This formu-
lation overcomes the need for large mini-batches and al-
lows the model to be optimized using single observations
during training. Specifically, given right-censored survival
outcome data, we build a discrete time survival model by
partitioning the continuous time scale into non-overlapping
bins: [t0, t1), [t1, t2), [t2, t3), [t3, t4) based on the quartiles
of survival time values (in months) of uncensored patients
in each TCGA cohort. The discrete event time of each pa-
tient, indexed by j, with continuous event time Tj,cont is then
defined by:

Tj = r if Tj,cont 2 [tr, tr+1) for r 2 {0, 1, 2, 3} (7)

Given the discrete time ground truth label of the j
th patient

as Yj . For a given patient with bag-level feature hfinalj , the
last layer of the network uses the sigmoid activation and
models the hazard function defined as:

fhazard(r | hfinalj) = P (Tj = r | Tj � r,hfinalj) (8)

which relates to the survival function through:

fsurv(r | hfinalj) = P (Tj > r | hfinalj)

=
rY

u=1

(1� fhazard(u | hfinalj))
(9)
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Th Present Tg Present BLCA BRCA GBMLGG LUAD UCEC Overall

- - 0.576 ± 0.028 0.579 ± 0.031 0.809 ± 0.030 0.537 ± 0.051 0.614 ± 0.042 0.623
X - 0.639 ± 0.031 0.556 ± 0.077 0.790 ± 0.013 0.597 ± 0.062 0.622 ± 0.035 0.641
- X 0.619 ± 0.028 0.510 ± 0.086 0.819 ± 0.020 0.572 ± 0.045 0.628 ± 0.033 0.630
X X 0.624 ± 0.034 0.580 ± 0.069 0.817 ± 0.021 0.620 ± 0.032 0.622 ± 0.019 0.653

Table 2: Ablation study assessing the impact of MIL Transformers in MCAT.

Figure 4: Kaplan-Meier Analysis showing low risk (blue) vs. high risk (red) patient stratification using predicted risk scores
from MCAT w.r.t. ground truth survival time. The Logrank test was used to measure the statistical significance in comparing
low vs. high risk patients as two different survival distributions.

During training, we update the model parameters using the
log likelihood function for a discrete survival model [66],
taking into account each patient’s binary censorship status
(cj = 1 if the patient lived past the end of the follow-up
period and cj = 0 for patients who passed away during the
recorded event time Tj):
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During training, we additionally up-weight the contribution
of uncensored patient cases using a weighted sum of L and
Luncensored

Lsurv = (1� �) · L+ � · Luncensored (11)

The 2nd term of the loss function, which corresponds to
uncensored patients only is computed as:
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7.3. Interpretability

To visualize multimodal interactions between WSIs and
genomic features, we used a combination of attention-based
and attribution-based interpretability to assess how features
are used to predict risk. As discussed in § 3.2, we use the
attention weights Acoattn 2 RN⇥M computed by the GCA

layer to visualize how image patches attend to each genomic
embedding, where M is the bag size of the WSI and N is
the number of genomic embeddings. To visualize attention
maps for N different genomic embeddings, we can overlay
the attention weights in each row in Acoattn onto the original
WSI, as the Softmax operator was applied row-wise. Note
that since gene attributes can belong to multiple functional
categories from [32], the genomic-guided WSI embeddings
bHcoattn may overlap with high attention attributed to simi-
lar morphological features. From visual assessment of two
pathologists, we observe that computing Acoattn yields 2-
4 unique attention maps across all cancer datasets using
N = 6, with general observations that the oncogenesis em-
bedding is able to localize all of the tumor regions, and the
cytokine embedding localizes a mixture of tumor-adjacent
stroma and immune-infiltrating tissue regions. To assess
gene attribute and genomic embedding feature importance,
we used Integrated Gradients (IG) [50], a gradient-based
feature attribution method that attributes how prediction are
made by the model with respect to the inputs. In the context
of survival analysis, features with positive attribution con-
tribute towards increasing the output value (high risk, point-
ing right), whereas negative attribution corresponds with
decreasing the output value (low risk, pointing left). We
use IG to visualize local, SHAP-like decision plots, which
we perform for low risk and high risk cases for all cancer
datasets in Figures 5-14.
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Figure 5: Co-attention visualization for a low-risk case of BLCA with high attention regions focusing on sheets of tumor cells
for the Oncogenesis and Cytokines gene embeddings, and adjacent normal fibrous stroma and surrounding adipose tissue for
the other gene embeddings.
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Figure 6: Co-attention visualization for a high-risk case of BLCA with high attention regions focusing on high-grade, infiltra-
tive tumor for the Tumor Suppression, Oncogenesis, Cellular Differentiation, and Cytokines gene embeddings, and adjacent
muscle, stroma, and large vessels for the other gene embeddings.
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Figure 7: Co-attention visualization for a low-risk case of BRCA with high attention regions focusing on small nests of tumor
cells for the Oncogenesis and Transcription gene embeddings, and adjacent dense, fibrous breast stroma, adipose tissue, and
reactive background glands for the other gene embeddings.
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Figure 8: Co-attention visualization for a high-risk case of BRCA with high attention regions focusing on small nests of
tumor cells for the Oncogenesis, Transcription, and Cytokines gene embeddings, and adjacent fibrous stroma, adipose tissue,
and desmoplastic stroma for the other gene embeddings.
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Figure 9: Co-attention visualization for a low-risk case of GBMLGG demonstrating high attention on areas of gliotic brain
tissue for Tumor Suppression, Oncogenesis, Transcription, and Cytokines gene groups, and high attention on blood and
relatively normocellular brain tissue for Protein Kinases and Cellular Differentiation gene embeddings.
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Figure 10: Co-attention visualization for a high-risk case of GBMLGG demonstrating high attention on areas of gliotic brain
tissue for the Oncogenesis gene embedding and high attention on relatively normocellular brain tissue for Tumor Suppression,
Protein Kinases, Cellular Differentiation, Transcription, and Cytokines gene embeddings.
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Figure 11: Co-attention visualization for a low-risk case of LUAD with high attention regions focusing on tumor in the
Tumor Suppression, Oncogenes, and Protein Kinases gene groups, areas containing many lymphocytes in the Cellular Dif-
ferentiation gene embeddings, and expanded airspaces containing proteinaceous fluid in the Transcription and Cytokines
gene embeddings. 20



Figure 12: Co-attention visualization for a high-risk case of LUAD with high attention regions focusing on tumor for the
Tumor Suppression and Cellular Differentiation gene embeddings, and adjacent normal lung, vessels, and scarred lung
parenchyma for the other gene embeddings.
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Figure 13: Co-attention visualization for a low-risk case of UCEC with high attention regions focusing on tumor for the
Tumor Suppression, Protein Kinases, Cellular Differentiation, Transcription, and Cytokines gene embeddings, and adjacent
background muscle and desmoplastic stroma for the other gene embeddings.
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Figure 14: Co-attention visualization for a high-risk case of UCEC with high attention regions focusing on regions of high
grade tumor with surrounding desmoplastic stroma for the Tumor Suppression, Protein Kinases, Cellular Differentiation,
Cytokines gene embeddings, and adjacent background muscle for the other gene embeddings.
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