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6. Supplementary Material

6.1. Implementation Details

Detailed network architecture. Figure 13 shows the de-
tailed architecture of our network. On the left, Figure 13 (a)
is the encoder network that is used in training and encoder-
decoder inference. It takes 3D grid as input and outputs the
latent grid Zn of each level. For the voxel super-resolution
experiment (Section 4.5), since the input is only 323, we
accordingly remove the first 4 convolution layers along with
their activation and normalization layers.

*Work done while the author was an intern at Google.

On the right, Figure 13 (b) is the pre-decoder network.
With latent grids {Zn} as input, it includes global connection
and trilinear interpolation. The global connection consists
of 3D transposed convolution layers to propagate global
context from level 0 to other levels. Trilinear interpolation
is utilized to obtain the latent codes at each query point,
which are then fed into the decoders at each level. For
level 0, the 3D position of query point is also fed into the
decoder. For the decoder modules, we use the same IM-
Net [3] architecture for each level, with the only difference
in the input dimension.

(b) Pre-decoder network with global connection and 
trilinear interpolation
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(a) Encoder network
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Figure 13: Detailed architecture of our network.
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Hyperparameters. We implement our method in Tensor-
Flow. During training, we set batch size as 8 and train
our network end-to-end. We use Adam as optimizer, with
β1 = 0.9, β2 = 0.999 and a learning rate of 1e−4. The
latent grid dropout rate is set as 0.5 for the models that need
to carry out decoder-only latent optimization while it is set
as 0 for the models that only run encoder-decoder inference
(e.g., the models for point cloud completion and voxel super-
resolution).

During decoder-only latent optimization, we optimize
over Zn, n = 0, 1, ..., 4 and keep other parameters fixed. We
use Adam with the same configuration of β1, β2 as training,
but at a higher learning rate of 1e−2 to accelerate conver-
gence. In all our experiments, we only run latent optimiza-
tion for 1000 steps. For each step during auto-encoding, we
randomly draw 2048 points. For each step during shape com-
pletion, we randomly draw 2048 camera-observable points,
along with 1024 occluded points for the global consistency
loss.

Experiment details. For the training data, we use the wa-
tertight ShapeNet meshes from OccNet [22] and normalize
into bounding box with side length 1.28. We also truncate
SDF values at 0.05.

For the auto-encoding experiment (Section 4.3), as men-
tioned in the paper, IF-Net [4] originally uses high-resolution
latent grids which contain more parameters than the input
grid. We therefore constrain IF-Net to only use latent grids
with dimensions: [83×22, 163×8]. The resulting total num-
ber of parameters in the latent grids is the same as MDIF .

For the point cloud completion (Section 4.4) and voxel
super-resolution (Section 4.5) experiments, unlike auto-
encoding, the goal is to infer missing data rather than learn a
compact latent space. Therefore, in these experiments, we
use the original implementation of IF-Net which exploits
high-resolution latent grids. Similarly, for MDIF in these
experiments, we additionally interpolate features at query
points from high-resolution feature grids and feed into the
decoders.

6.2. Encoder-Decoder vs. Decoder-Only Inference

In Figure 14, we show qualitative auto-encoding results
of MDIF using encoder-decoder inference and decoder-only
latent optimization. Compared with encoder-decoder in-
ference, decoder-only latent optimization already produces
more accurate reconstruction with only 200 optimization
steps. More steps further lower the error.

6.3. Illustration of Ablation Baselines

In Figure 15, we illustrate the baselines that we ablate in
Table 1 and Table 2.

GT Encoder-
decoder

Decoder-only
50 steps 200 steps 1000 steps

Figure 14: Encoder-decoder vs. decoder-only inference.
Auto-encoding results of MDIF under encoder-decoder in-
ference and decoder-only latent optimization. Top 3 rows:
objects in 3D-R2N2 test split. Bottom 3 rows: objects in
unseen categories.
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Figure 15: Illustration of ablation study baselines. E: en-
coder; D: decoder.

6.4. Comparison of Dropout and Consistency Loss

To further analyze the different contribution of latent grid
dropout and global consistency loss on shape completion,



Method
Shape Completion

Chamfer (↓) F-Score (↑)

Full pipeline 1.34 66.5
No consistency loss 1.43 64.7
No dropout (leave-one-out) 1.43 63.9

Table 6: Quantitatively ablate the impacts of consistency
loss and latent grid dropout on shape completion from depth
image.

GT Full  
pipeline
(level 0)

No 
consistency 

loss

No 
dropout

(leave-one-out)

Full  
pipeline

Figure 16: Ablation on latent grid dropout and consis-
tency loss for the task of shape completion. Green dots
are observed depth points. Compared to the global con-
sistency loss which regularizes regions far from observed
points, latent grid dropout reduces noisy residuals and en-
ables plausible detail synthesis on regions that are close to
the observed part.

we carry out a leave-one-out ablation on dropout where the
only difference with full pipeline is the removal of latent
grid dropout. Same as the baselines in Table 2, this ablation
is conducted on the chair category of ShapeNet. In Table 6,
we show that the removal of dropout leads to slightly larger
decrease in quantitative performance than the removal of
consistency loss. Meanwhile, dropout impacts qualitative
results in a different way than the consistency loss. As
shown in Figure 16, when dropout is applied (the third and
fourth columns from the left), the model is able to synthesize
plausible details on the unobserved regions that are close to
the observed part (see insets at the bottom). On the contrary,
without dropout (the rightmost column), the model tends to
produce noisy residuals (red inset) or add no detail due to
the consistency loss (blue inset).

6.5. Failure Cases

Figure 17 shows our failure cases under decoder-only
latent optimization for auto-encoding and shape completion
from depth image. For objects with very complex geometry
or thin structures, our approach still faces challenges. For
auto-encoding, such problems could be alleviated by using
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Figure 17: Failure cases. Row 1 and 2: auto-encoding; Row
3 and 4: shape completion from depth image.

Ours Ours-6 Ours-7 Ours-8 Ours Ours-6 Ours-7 Ours-8

Chamfer 0.19 0.13 0.13 0.12 0.17 0.14 0.13 0.13
F-Score 93.0 96.5 96.7 97.5 92.8 96.3 97.1 97.3

Table 7: Auto-encoding accuracy with more levels. Mid-
dle columns: 3D-R2N2 test set. Right columns: unseen
categories. “Ours” stands for 5 levels and “Ours-N” stands
for N levels.

more levels and higher resolution latent grids. For shape
completion, when an unobserved part (e.g., the lamp body
in row 3, column 3) is completely missing in the coarse
prediction from level 0, our approach is unable to synthesize
such delicate structures.

6.6. Additional Ablation for Number of Levels

In the paper, we use 5 levels as it is a good balance be-
tween accuracy and efficiency. But as previously indicated,
MDIF is flexible to use other number of levels. In Figure 9,
we showed progressive refinement rate-distortion for levels
1-5. Here in Table 7, we further show the auto-encoding ac-
curacy under encoder-decoder inference with up to 8 levels.

6.7. Interpolation and Retrieval in Latent Space

Figure 18 shows linear interpolation in latent space. The
latent codes for the two ends are obtained with encoder-
decoder auto-encoding. Figure 19 shows results for object
retrieval based on latent codes (top-2 retrievals for each query
object).



Figure 18: Linear interpolation in latent space.

Query Retrieval Query Retrieval

Figure 19: Object retrieval. Queries are from test set (left)
and unseen categories (right). Retrieved objects are from
training set.
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test_02958343\e7c4b54fe56d9288dd1e15301c8

Input IF-Net Ours GT

test_03001627\ccc4b5366a6dc7c4cffab2c8f8bf5

test_03636649\d7fb922f162360b5c66a63406f81

test_04090263\e1e43d3916a7e19acb7b0ec95e

test_04379243\fcad199862c19cd97fb247f6727f

Figure 20: Point cloud completion. Additional qualitative
results.

6.8. Additional Qualitative Results

Figure 20 and Figure 21 show additional qualitative
comparisons on point cloud completion and voxel super-
resolution. Compared to IF-Net, our method generally pro-
duces cleaner reconstructions with less artifacts.

test_02691156\fb68077d405c233ef879f4163a3e

test_02828884\e28f8467945b5d526070f6b7b254

Input IF-Net Ours GT

test_02958343\d652c35de82c3f3141fd6622cb2

test_03636649\d7fb922f162360b5c66a63406f81

test_03211117\e477ab5ea25f171172249e3f2c8

test_03636649\f1cc6b6fa75bd67ff51f77a6d7299

Figure 21: Voxel super-resolution. Additional qualitative
results.

6.9. Detailed Quantitative Results

Table 8 and Table 9 show per-category quantitative results
(Chamfer L2 distance and F-Score) on auto-encoding. For
encoder-decoder inference, we compare MDIF with OccNet
(“Occ.”) [22], SIF [13], LDIF [12] and IF-Net (“IF.”) [4]. For
decoder-only latent optimization, we compare MDIF with
OccNet (“Occ.”) [22], IM-Net (“IM.”) [3] and a local base-
line (resembles [18, 1]). Table 10 shows per-category quanti-
tative results (Chamfer L2 distance / F-Score) on point cloud
completion and voxel super-resolution, where we compare
MDIF with IF-Net [4] under encoder-decoder inference.

In these experiments, MDIF has lower Chamfer errors for
most categories and higher overall F-Score.

6.10. Shape Completion User Study

First, in Table 11, we compare quantitative results of
MDIF and competing methods on shape completion from
depth image. In this comparison, we also include a
MDIF model (“Ours”) that uses encoder-decoder inference.
This model has the same architecture as the MDIF model
in the point cloud completion experiment, and is retrained
from scratch to take voxelized depth points (depth points
voxelized into a 1283 grid) as input. In terms of metrics,
we additionally use Asymmetric Chamfer to measure the
reconstruction accuracy in observed regions. It is computed
as one-directional Chamfer L2 distance from depth points to
reconstruction.



Category Chamfer (↓) F-Score (↑, %)
Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours* Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

airplane 0.16 0.44 0.10 0.52 0.05 0.25 0.13 0.044 0.028 87.8 71.4 96.9 94.4 97.2 89.8 91.7 98.5 98.6
bench 0.24 0.82 0.17 0.31 0.08 0.34 0.22 0.121 0.052 87.5 58.4 94.8 92.6 92.4 85.2 88.6 96.0 96.0
cabinet 0.41 1.10 0.33 0.11 0.29 0.32 0.23 0.063 0.051 86.0 59.3 92.0 93.0 91.5 83.2 89.2 96.6 96.6
car 0.61 1.08 0.28 0.30 0.29 0.58 0.26 0.090 0.088 77.5 56.6 87.2 87.4 86.6 69.3 82.7 93.1 93.0
chair 0.44 1.54 0.34 0.10 0.10 0.38 0.43 0.042 0.035 77.2 42.4 90.9 94.5 93.8 80.2 82.5 97.7 97.6
display 0.34 0.97 0.28 0.07 0.08 0.35 0.20 0.043 0.019 82.1 56.3 94.8 96.1 95.1 82.3 89.4 98.6 98.7
lamp 1.67 3.42 1.80 1.17 0.90 1.47 2.76 0.795 0.795 62.7 35.0 84.0 89.1 87.1 62.9 73.8 93.5 93.5
rifle 0.19 0.42 0.09 1.07 0.05 0.39 0.55 0.060 0.057 86.2 70.0 97.3 93.5 96.2 86.1 81.1 96.9 96.9
sofa 0.30 0.80 0.35 0.13 0.11 0.31 0.16 0.208 0.037 85.9 55.2 92.8 92.5 93.5 85.2 89.3 98.3 98.4
speaker 1.01 1.99 0.68 0.14 0.27 0.38 0.17 0.065 0.044 74.7 47.4 84.3 90.2 90.1 78.1 89.4 97.3 97.3
table 0.44 1.57 0.56 0.17 0.13 0.31 0.30 0.107 0.046 84.9 55.7 92.4 93.4 93.7 87.2 88.6 96.5 97.6
telephone 0.13 0.39 0.08 0.08 0.06 0.19 0.11 0.043 0.010 94.8 81.8 98.1 98.8 98.3 88.9 96.5 99.6 99.6
watercraft 0.41 0.78 0.20 0.90 0.10 0.35 0.39 0.075 0.067 77.3 54.2 93.2 92.7 93.7 80.3 84.7 97.4 97.2

mean 0.49 1.18 0.40 0.39 0.19 0.43 0.46 0.135 0.102 81.9 59.0 92.2 92.9 93.0 81.4 86.7 96.9 97.0

Table 8: Per-category auto-encoding accuracy for objects in 3D-R2N2 test set of ShapeNet. For each metric, left columns
compare methods under encoder-decoder inference while right columns compare under decoder-only latent optimization. ∗:
decoder-only latent optimization.

Category Chamfer (↓) F-Score (↑, %)
Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours* Occ. SIF LDIF IF. Ours Occ.* IM.* Local* Ours*

bed 1.30 2.24 0.68 0.10 0.16 0.87 0.43 0.052 0.045 59.3 32.0 81.4 94.7 90.9 67.1 77.8 96.8 97.0
birdhouse 1.25 1.92 0.75 0.31 0.11 0.72 0.49 0.036 0.036 54.2 33.8 76.2 90.4 92.1 61.3 74.3 97.6 97.7
bookshelf 0.83 1.21 0.36 0.30 0.20 0.99 0.60 0.103 0.091 66.5 43.5 86.1 93.5 88.3 59.0 73.0 95.1 94.2
camera 1.17 1.91 0.83 0.27 0.16 0.45 0.58 0.047 0.050 57.3 37.4 77.7 95.0 94.0 70.2 75.9 98.6 98.6
file 0.41 0.71 0.29 0.35 0.30 0.38 0.25 0.054 0.041 86.0 65.8 93.0 95.7 94.4 84.3 90.0 97.6 97.7
mailbox 0.60 1.46 0.40 1.18 0.20 0.51 0.74 0.102 0.102 67.8 38.1 87.6 81.4 93.5 80.0 85.2 98.5 98.5
piano 1.07 1.81 0.78 0.34 0.08 0.91 0.71 0.034 0.030 61.4 39.8 82.2 96.7 94.8 62.2 77.3 98.3 98.3
printer 0.85 1.44 0.43 0.15 0.15 0.48 0.31 0.035 0.035 66.2 40.1 84.6 94.9 94.3 74.9 82.3 98.2 98.3
stove 0.49 1.04 0.30 0.55 0.22 0.37 0.25 0.107 0.040 77.3 52.9 89.2 91.3 93.5 78.6 87.4 97.7 97.7
tower 0.50 1.05 0.47 0.44 0.14 0.53 0.30 0.060 0.070 70.2 45.9 85.7 90.3 91.8 73.9 81.7 96.9 96.6

mean 0.85 1.48 0.53 0.40 0.17 0.62 0.47 0.063 0.054 66.6 43.0 84.4 92.4 92.8 71.1 80.5 97.5 97.5

Table 9: Per-category auto-encoding accuracy for objects in unseen categories of ShapeNet. For each metric, left columns
compare methods under encoder-decoder inference while right columns compare under decoder-only latent optimization. ∗:
decoder-only latent optimization.

Category Point Cloud Completion Voxel Super-Resolution
IF-Net Ours IF-Net Ours

airplane 2.37 / 89.7 0.08 / 93.3 1.51 / 78.3 1.02 / 80.7
bench 1.22 / 84.5 0.18 / 86.0 1.88 / 59.1 1.09 / 59.5
cabinet 1.65 / 87.1 0.84 / 83.8 0.65 / 60.6 0.60 / 60.8
car 1.96 / 79.4 0.19 / 80.9 0.40 / 75.8 0.30 / 75.8
chair 2.02 / 81.3 0.33 / 80.5 1.02 / 62.6 0.82 / 63.4
display 1.09 / 88.5 0.30 / 88.6 1.04 / 62.0 0.74 / 62.1
lamp 2.03 / 76.3 1.76 / 78.0 8.14 / 58.3 3.97 / 60.9
rifle 2.19 / 85.3 0.05 / 95.9 2.09 / 78.0 0.34 / 81.3
sofa 0.71 / 88.2 0.18 / 86.8 0.68 / 56.2 0.48 / 57.5
speaker 1.52 / 78.4 0.65 / 75.9 0.73 / 56.1 0.65 / 58.0
table 1.70 / 84.7 0.25 / 85.1 2.72 / 53.5 1.87 / 55.7
telephone 0.98 / 95.7 0.06 / 96.5 0.77 / 77.9 0.67 / 78.2
watercraft 1.51 / 87.2 0.14 / 88.4 2.05 / 71.7 0.69 / 73.6

mean 1.61 / 85.0 0.39 / 86.1 1.82 / 65.4 1.02 / 66.7

Table 10: Per-category quantitative results (Chamfer L2
distance / F-Score) for point cloud completion and voxel
super-resolution.

When comparing under encoder-decoder inference (“Oc-
cNet”, “LDIF”, “Ours”), MDIF is only slightly worse than
LDIF in F-Score while performs the best in the other two
metrics. This reveals that when using encoder-decoder infer-
ence, MDIF can produce completion results similarly close
to the groundtruth as LDIF. Meanwhile, the large margin
in Asymmetric Chamfer compared with OccNet and LDIF
demonstrates the better capability of MDIF to preserve de-
tails in observed regions, even under encoder-decoder in-
ference. For the MDIF model that uses decoder-only latent
optimization (“Ours*”), although it has worse performance
in Chamfer distance and F-Score, it can reduce the error
in Asymmetric Chamfer even much further. This indicates
that it performs much better on the observable parts and the
source of error mostly comes from the unobserved parts. As
illustrated in the paper (Figure 12), although different from



Category Chamfer (↓) F-Score (↑, %) Asym. Chamfer (↓)
OccNet LDIF Ours Ours* OccNet LDIF Ours Ours* OccNet LDIF Ours Ours*

airplane 0.47 0.17 0.26 0.46 70.1 89.2 90.1 73.2 0.246 0.054 0.022 0.007
bench 0.70 0.39 0.45 0.96 64.9 81.9 82.5 56.9 0.281 0.108 0.049 0.012
cabinet 1.13 0.77 0.73 1.35 70.1 77.9 73.8 60.4 0.109 0.052 0.070 0.009
car 0.99 0.51 0.41 1.04 61.6 72.4 74.3 64.2 0.138 0.054 0.043 0.011
chair 2.34 1.02 0.91 1.42 50.2 69.6 72.5 67.0 0.785 0.270 0.053 0.012
display 0.95 0.62 0.56 1.69 62.8 80.0 76.7 55.4 0.312 0.217 0.056 0.007
lamp 9.91 2.15 1.26 3.26 44.1 66.4 70.5 54.6 10.80 1.429 0.160 0.110
rifle 0.49 0.14 0.31 0.62 66.4 92.3 91.5 75.9 0.246 0.048 0.022 0.005
sofa 1.08 0.83 0.70 1.19 61.2 71.7 71.4 62.1 0.155 0.074 0.059 0.007
speaker 3.50 1.48 1.45 3.73 52.4 67.3 64.6 49.8 0.280 0.115 0.077 0.020
table 2.49 1.14 0.94 1.11 66.7 78.0 77.8 61.5 0.784 0.339 0.065 0.015
telephone 0.35 0.19 0.21 1.05 86.1 92.0 89.4 55.9 0.089 0.046 0.046 0.002
watercraft 1.15 0.50 0.45 0.69 54.5 77.5 78.3 67.2 0.684 0.148 0.033 0.020

mean 1.97 0.76 0.67 1.43 62.4 78.2 78.0 61.9 1.147 0.227 0.058 0.018

Table 11: Shape completion from depth image. Quantitative comparisons on Chamfer distance, F-Score and Asymmetric
Chamfer distance. “Ours*” achieves the lowest error on the observed part, measured by the Asymmetric Chamfer distance.
Its worse Chamfer and F-Score results are caused by the unobserved part. See our user study for more in-depth analysis. ∗:
decoder-only latent optimization.

the groundtruth, the unobserved parts of its results still look
plausible.

To prove our point, we conducted a user study to compare
human subjective verdicts and F-Score. We recruited 88
participants who were at least 18 years old. All participants
had no prior knowledge of this project. Each participant was
given 32 pairs of examples, one from MDIF (with decoder-
only latent optimization) and one from LDIF [12]. Order
of the examples is fully counterbalanced and randomized.
Each example was shown in two different views: one ob-
served (input view) and one unobserved. Participants were
then asked to choose which example was the more plausible
reconstruction given the input. If both examples looked sim-
ilarly plausible, they were allowed to choose cannot decide.

Examples were chosen in this way. The worst results in
F-Score were filtered, since both human and F-Score tend to
agree on those cases. Then examples with unmatched input
views were removed. We then randomly picked 32 examples
from the rest.

The results of user study are summarized in Figure 22.
In contrast to F-Score, 54.2% of the participants chose in
favor of MDIF results, whilst 31.9% thought LDIF results
were better. In addition, 13.9% could not decide between
MDIF and LDIF. Moreover, when compared with the quan-
titative metrics, 68.1% disagree with Chamfer L2 distance,
and 51.4% disagree with F-Score. All the 32 examples and
itemized results are shown in Figure 23, Figure 24, Figure 25
and Figure 26.

The conclusion of this user study aligns with previous
work [32], where Chamfer distance has been argued as not
suitable for evaluating completion tasks due to its sensitivity

to outliers. Moreover, this study also shows that, although
more robust, F-Score only tells us how different the recon-
struction of the unobserved part is from the groundtruth, but
not how plausible it is, which is what humans ultimately
care about.

(a) Vote statistics

(b) Compare with Chamfer    (c) Compare with F-Score

Figure 22: Summary of user study. Participants were asked
which reconstruction was more plausible. 54.2% chose
MDIF while 13.9% cannot decide between the results. More-
over, 68.1% of the votes disagree with Chamfer L2 distance,
and 51.4% disagree with F-Score. Refer to Figure 23 to
Figure 26 for itemized results.



  GT                                  LDIF                                                                      MDIF

11. 88, 0, 0
chamfer 0.3035 0.1406 0.1629
fscore 80.28 84.62 -4.34
asymmetric chamfer 0.0276 0.0335 0.8247

4. 85, 1, 2
chamfer 0.3488 0.1390 0.2098
fscore 64.90 85.48 -20.58
asymmetric chamfer 0.0050 0.1491 0.0333

5. 83, 0, 5
chamfer 0.2556 0.2009 0.0547
fscore 74.63 85.51 -10.88
asymmetric chamfer 0.0034 0.0274 0.1239

28. 83, 1, 4
chamfer 0.2311 0.1362 0.0948
fscore 73.98 85.05 -11.06
asymmetric chamfer 0.0065 0.0791 0.0818

2. 80, 5, 3
chamfer 0.0886 0.0325 0.0561
fscore 84.55 98.21 -13.66
asymmetric chamfer 0.0012 0.0111 0.1121

14. 76, 1, 11
chamfer 0.1286 0.1104 0.0182
fscore 83.41 84.10 -0.69
asymmetric chamfer 0.0036 0.0454 0.0801

9. 78, 5, 5
chamfer 0.2618 0.0964 0.1654
fscore 82.14 93.68 -11.54
asymmetric chamfer 0.0016 0.0159 0.0984

20. 73, 0, 15
chamfer 1.7886 0.5556 1.2330
fscore 59.34 69.03 -9.70
asymmetric chamfer 0.0061 0.5031 0.0122
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Figure 23: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.



  GT                                  LDIF                                                                      MDIF

12. 78, 7, 3
chamfer 0.2588 0.0996 0.1592
fscore 75.25 87.38 -12.13
asymmetric chamfer 0.0028 0.0376 0.0742

26. 75, 10, 3
chamfer 0.9906 0.4540 0.5366
fscore 71.25 73.87 -2.62
asymmetric chamfer 0.0038 0.0454 0.0829

1. 74, 10, 4
chamfer 0.1045 0.0448 0.0597
fscore 82.61 96.21 -13.60
asymmetric chamfer 0.0014 0.0094 0.1527

18. 61, 0, 27
chamfer 3.2172 1.7186 1.4986
fscore 55.71 55.34 0.37
asymmetric chamfer 0.0105 0.8667 0.0121

19. 61, 3, 24
chamfer 0.5586 0.4976 0.0611
fscore 60.01 55.22 4.79
asymmetric chamfer 0.0106 0.0849 0.1251

10. 70, 14, 4
chamfer 0.3021 0.1385 0.1636
fscore 79.36 93.68 -14.32
asymmetric chamfer 0.0005 0.0111 0.0435

25. 65, 10, 13
chamfer 1.0817 0.6070 0.4746
fscore 64.62 70.86 -6.24
asymmetric chamfer 0.0241 0.0244 0.9868

3. 55, 19, 14
chamfer 0.1013 0.0827 0.0186
fscore 85.44 90.66 -5.22
asymmetric chamfer 0.0027 0.0187 0.1429
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Figure 24: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.



  GT                                  LDIF                                                                      MDIF

23. 54, 23, 11
chamfer 0.1889 0.0839 0.1051
fscore 85.45 88.26 -2.81
asymmetric chamfer 0.0028 0.0234 0.1213

15. 49, 23, 16
chamfer 1.5430 0.1016 1.4414
fscore 56.76 93.01 -36.25
asymmetric chamfer 0.0026 0.0309 0.0848

31. 45, 22, 21
chamfer 0.1882 0.0580 0.1302
fscore 81.64 93.06 -11.42
asymmetric chamfer 0.0009 0.0170 0.0514

32. 38, 19, 31
chamfer 0.2138 0.1013 0.1124
fscore 78.85 91.66 -12.81
asymmetric chamfer 0.0097 0.0373 0.2612

7. 31, 22, 35
chamfer 2.1987 1.6165 0.5822
fscore 56.24 51.15 5.09
asymmetric chamfer 0.0006 0.0132 0.0455

27. 34, 34, 20
chamfer 0.2675 0.1115 0.1560
fscore 73.87 89.79 -15.92
asymmetric chamfer 0.0016 0.0160 0.0996

13. 31, 53, 4
chamfer 0.3412 0.0625 0.2787
fscore 83.48 91.77 -8.29
asymmetric chamfer 0.0017 0.0212 0.0786

21. 17, 46, 25
chamfer 9.4814 0.2091 9.2723
fscore 55.20 92.75 -37.55
asymmetric chamfer 0.0029 0.2968 0.0098
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Figure 25: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.



  GT                                  LDIF                                                                      MDIF

22. 16, 55, 17
chamfer 1.0011 0.0997 0.9014
fscore 58.70 87.36 -28.66
asymmetric chamfer 0.0031 0.0223 0.1371

29. 12, 54, 22
chamfer 0.2623 0.1110 0.1513
fscore 81.10 83.79 -2.69
asymmetric chamfer 0.0015 0.0182 0.0799

16. 6, 59, 23
chamfer 2.1095 0.1223 1.9872
fscore 53.31 75.54 -22.23
asymmetric chamfer 0.0010 0.0170 0.0569

8. 3, 71, 14
chamfer 1.9441 0.1694 1.7747
fscore 71.35 75.01 -3.65
asymmetric chamfer 0.0004 0.0100 0.0429

30. 5, 76, 7
chamfer 0.2213 0.1068 0.1145
fscore 77.68 92.97 -15.29
asymmetric chamfer 0.0007 0.0194 0.0343

24. 1, 84, 3
chamfer 0.1992 0.0280 0.1712
fscore 87.87 99.41 -11.54
asymmetric chamfer 0.0046 0.0110 0.4186

6. 0, 86, 2
chamfer 0.4552 0.0678 0.3875
fscore 67.56 93.59 -26.03
asymmetric chamfer 0.0112 0.0281 0.3974

17. 0, 86, 2
chamfer 0.3842 0.0615 0.3227
fscore 70.42 94.88 -24.45
asymmetric chamfer 0.0024 0.0149 0.1640
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Figure 26: Itemized user study results. For each example, we show the groundtruth mesh under input view, and the
reconstruction results under two views: one observed view same as input and one unobserved view. The bar chart shows the
percentages of votes. Red: prefer LDIF; Blue: prefer MDIF; Gray: Cannot decide; F: F-Score; C: Chamfer L2 distance.
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