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Overview
In this supplementary material, we provide additional

contents of SGPA network that are not included in the main

paper due to the space limit:

• Section A gives a more detailed per-category pose ac-

curacy comparison between SGPA and SPD on the

REAL275 dataset.

• Section B provides more qualitative comparisons with

SPD.

• Section C shows more visualization results of the

learned attention map on the REAL25 dataset.

• Section D shows the key-points extracted by our struc-

ture regularized low-rank transformer network. Sec-

tion E deploys our prior adaptation module on SPD.

The comparative results further demonstrate the effec-

tiveness of our proposed prior adaptation network.

A. Per-Category Evaluation
Figure 1 and Figure2 show detailed comparisons be-

tween our SGPA and SPD [1] on the REAL275 dataset.

SGPA significantly outperforms SPD in terms of rotation,

especially for object categories that may contain a large

intra-class variasion in shape and size, such as camera and

mug. For the camera category, its lens could be very dif-

ferent from one instance to another in length. For the mug

category, ite overall size and the shape of its handle could

have obvious variations. On these categories, our SGPA

achieves a much more higher accuracy than SPD, which

demonstrates the superiority of our method.

B. Qualitative Results on REAL275
Figure 3 gives more qualitative comparisons between

SGPA and SPD on the REAL275 dataset [2]. We visualize

the pose estimation result by displaying the predicted object

Table 1. General effectiveness of proposed prior adapta-
tion (Section E). Evaluation of the proposed prior adaptation

method when integrated with SPD.

Method
CAMERA25

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
SPD*[1] 93.0 85.5 58.1 62.9 75.9 83.8

+ Adaptation 93.2 87.5 64.9 69.5 78.8 85.7
+0.2 +2.0 +6.8 +6.6 +3.9 +1.9

REAL275

3D50 3D75 5◦2cm 5◦5cm 10◦2cm 10◦5cm
SPD*[1] 80.0 56.7 20.0 22.3 45.3 57.9

+ Adaptation 80.8 58.8 26.5 30.0 53.1 63.4
+0.3 +2.1 +6.5 +7.7 +7.8 +5.5

axes on the RGB image. Ideally, the center and the orien-

tation of the axes should be well aligned with the object (as

shown in Figure 3(a)). In different real environments, our

proposed SGPA consistently outperforms SPD, which can

be best viewed and demonstrated by comparing the orienta-

tion of object axes predicted by different methods.

C. Visualization of the Attention Map

Figure 4 presents more visualization results of the atten-

tion map learned by our SGPA network. The learned at-

tention map indicates the relationship (structure similarity)

between the prior point cloud and the object point cloud.

For a query position on the prior point cloud, we visualize

its associated relationships with the object point cloud by

projecting the attention values onto the corresponding RGB

image. For each attention map, the warmer of the color, the

larger of the attention value. Red indicates a stronger atten-

tion. For each query position of the prior point cloud, our

SGPA tends to first focus on the corresponding part of the

instance (e.g., see the point on the handle of the mug and its

top-8 attention map), and then spread to the whole object

region to learn a global relationship. These results demon-

strate that SGPA learns meaningful structure similarity be-

tween prior and target object for effective prior adaptation.
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Figure 1. Rotation precision evaluation (Section A). We give a detailed comparison of our SGPA and SPD [1] on the REAL275 dataset

in terms of rotation accuracy. The average precision with respect to different angle thresholds are computed and compared.
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Figure 2. Translation precision evaluation (Section A). We give a detailed comparison of our SGPA and SPD [1] on the REAL275 dataset

in terms of translation accuracy. The average precision with respect to different translation thresholds are computed and compared.

D. Visualization of Object Key-Points
In Section 3.3 of the main paper, we resort to an auxiliary

network to extract n key-points from the target object point

cloud, and use these key-points to regularize the projection

matrix of the adopted low-rank transformer network (please

refer to the main paper for more details). By this regular-

ization, we hope to guide the network to use the geometry

features on the extracted n key-points for a more effective

prior adaptation. In Figure 5, we visualize the by-product

of our SGPA, that is, n key-points of the object point cloud.

Generally, the extracted n key-points can precisely localize

the distinctive structure of the object (e.g., mug handle and

laptop scree corner), and uniformly cover the whole region

of the instance at the same time.

E. General Effectiveness of Prior Adaptation
In order to further investigate the effectiveness of our

SGPA network, we directly deploy our prior adaptation
module on SPD [1]. We trained SPD and SDP + prior adap-
tation with the same setting, and evaluated their pose es-

timation performance on both CAMERA25 and REAL275
datasets. Table 1 gives the comparative results. Compared
with SPD, adding our proposed prior adaptation module
significantly improves the pose accuracy on both datasets.
Specifically, it improves the mAP of IoU75 and 5◦2cm from
85.5% and 58.1% to 87.5% and 64.9% on the CAMERA25,
and from 56.7% and 20.0% to 58.8% and 26.5% on the
REAL275. These results further demonstrate the effective-
ness of our proposed prior adaptation method for category-
level 6D object pose estimation.
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(a) Ground-truth (b) SPD (c) Ours SGPA

Figure 3. Qualitative comparisons between our SGPA and SPD (Section B). Three axes associated with each object indicate the pose

estimation result. If the axis position and orientation are more consistent with the one of ground truth, the pose estimation accuracy of the

algorithm is higher. Best viewed in color with zoom in.
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Figure 4. Visualization of attention map (Section C). We visualize the attention map learned by our prior adaptation network. For each

query point on the prior point cloud (a), we visualize its relationships with the object point cloud by projecting the attention values onto

the corresponding RGB image. To show the trend of the attention map, we present Top-k attentions, where k = 8, 16, 32, 64, 128 from (b)

to (f). The color varies from blue to red corresponding to the attention value varies from small to large.
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Figure 5. Object key-point visualization (Section D). We visualize the sparse key-points extracted by our structure regularized low-rank

transformer network. Key-points are projected onto the depth image for a clear visualization. For each column, (a) is the RGB observation.

(b)-(f) are results correspond to 16, 32, 64, 128 and 256 key-points respectively. Different colors indicate key-points for different categories

of objects.


