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Abstract

In this supplementary document, we first provide implementation details of our method in Sec. 1. We then provide
details regarding the evaluation protocol and the implementation of baseline methods in Sec. 2. Finally, we show additional
qualitative results in Sec. 3.

1. Implementation Details

In this section, we provide technical details of our method.

1.1. Architecture

We implemented our models in PyTorch [12]. Our architectures for the occupancy network and the skinning network are
illustrated in Fig. 1. Note that we chose a smaller network size for the skinning weight network, as skinning weights are
typically smooth and thus don’t require a high-capacity network to be modeled well. We use geometric initialization [2] for
the occupancy network’s weights and PyTorch’s default initialization for the skinning network weights. The pose condition
p for the canonical occupancy network is obtained by concatenating all axis angles. No positional encoding [11] is used in
the experiments on 3D minimally clothed humans to enable a fair comparison to the NASA baseline. For our results on 3D
clothed humans, we apply positional encoding [11] with 4 frequency components on the input points to better model local
details, e.g., wrinkles.
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Figure 1: Network Architectures. Each block represents a linear layer with its output dimension specified in the inset,
followed by a weight normalization layer [13] and a softplus [6] activation layer. An exception is the block at the bottom left
which represents a linear layer for reducing the dimension of the pose condition to 8.



1.2. Root Finding

We use Broyden’s method [4] for our correspondence search. To find the solution to the equation g(x) = 0, Broyden’s
method iteratively updates the solution estimate xk via

∆xk = xk − xk−1 (1)

∆gk = g(xk)− g(xk−1) (2)

(Jk)−1 = (Jk−1)−1 +
∆xk − (Jk−1)−1∆gk

(∆xk)T · (Jk−1)−1 ·∆gk
(∆xk)T (Jk−1)−1 (3)

xk+1 = xk − (Jk)−1 · g(xk) (4)

where Jk is the approximation of the Jacobian matrix of g. In our case, we have g(x) = dσw
(xk,B)−x′. In our experiments,

we set the maximum number of update steps to 50 and the convergence threshold to 10−5. After each update, points with
errors lower than the convergence threshold are considered converged and excluded in further updates.

1.3. Losses

As described in the main paper, our main training loss is the binary cross entropy loss LBCE(o(x′,p), ogt(x
′)) between

the predicted occupancy of the deformed points o(x′,p) and the corresponding ground-truth occupancy ogt(x′) for all posed
3D meshes of a single subject that we use as observations. For complex shapes and articulation (e.g., 3D humans), we add
a small auxiliary loss to guide learning in early iterations. Towards this goal, we randomly sample points xbone along the
bones connecting joints in canonical space and encourage their occupancy probabilities to be one, by minimizing a binary
cross entropy loss Lbone. Moreover, we encourage the skinning weights of all joints xjoint in canonical space to be equal to
0.5 for the respective neighboring bones

Lbone = LBCE(fσf
(xbone,p), 1) (5)

Ljoint = ‖wσw
(xjoint)−wjoint,target‖22 (6)

where wjoint,target is a vector that is 0.5 for the neighboring bones and 0 elsewhere. These two additional losses help to
bootstrap training and are applied only during the first epoch. We set the weights of the losses to λBCE = 1, λbone =
1, λjoint = 10 in the first epoch and to λBCE = 1, λbone = 0, λjoint = 0 afterwards.

1.4. Training

We train our network using the Adam optimizer [7] with a learning rate of η = 10−4 without weight decay or learning
rate decay. For other hyper-parameters of Adam, the default values are used: β1 = 0.9 and β2 = 0.999. Training a model
takes around 36h on a single RTX 2080Ti GPU.

1.5. Mesh Extraction

Original Mesh
Extraction

Modified Mesh
Extraction

NASA's Result 

Following NASA [5], we adopt Multiresolution IsoSurface Extraction [10] to
extract meshes from the continuous occupancy fields in the deformed space. We
use the same spatial resolution for NASA’s and our results. The qualitative results
in the supplementary video and this document are generated using a grid resolu-
tion of 5123 and 2563, respectively. The inference time for extracting one mesh is
around 1 minute at 5123 resolution and around 10 seconds at 2563 resolution.

We note that in NASA’s official implementation, the mesh surface is extracted
as the 0.5-level set of the predicted occupancy probability, which differs from
the common practice [10], where the iso-surface is extracted as the 0-level set
of the predicted logits (raw output of the occupancy network without applying
the sigmoid activation). This leads to noticeable step artifacts in NASA’s results
(shown on the right) as the marching cubes algorithm requires a smooth transition
near the occupancy boundary to interpolate the positions of triangle vertices while
the sigmoid activation function increases the slope near the occupancy boundary.
For a fair qualitative comparison, we thus modify the mesh generation code in
NASA to obtain qualitative results that do not suffer from strong discretization
artifacts as shown on the right.
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Figure 2: Illustration of Baseline Methods. Pose-ONet takes a deformed point x′ and the pose as input, and directly
output the corresponding occupancy probability. Back-LBS first predicts the skinning weights of a point in deformed space
with a pose-conditioned skinning network. Subsequently, it determines the canonical correspondence via LBS, and finally
outputs the occupancy of the canonical correspondence as the occupancy of the deformed point. Back-D directly predicts
the displacement from deformed space to canonical space. The piecewise baseline transforms the query point rigidly to the
canonical space of each bone, and then obtains multiple occupancy predictions, one from each bone occupancy network.
These occupancy predictions are then aggregated via a max operator.

2. Evaluation Protocol
In this section, we provide additional details about our evaluation protocol.

2.1. Dataset

For within-distribution evaluation on 3D minimally clothed humans, we follow NASA and use 10 subjects from the
DFaust [3] subset of AMASS [9]. For each subject, we split 10 sequences into 9 sequences for training and 1 held-out
sequence for testing. In total, the training set for each subject contains 3000 training samples on average, and the test set
contains 340 samples on average.

For out-of-distribution evaluation, we test the DFaust-trained models’ performance on poses from the PosePrior [1] dataset.
We select 7 sequences which contain full-body movements (op2, op3, op4, op5, op7, op8, op9). For each sequence, we
evaluate on every 10th frame, resulting in 1096 evaluation frames in total. The ground truth meshes are generated by feeding
pose parameters from PosePrior and shape parameters from respective subjects in DFaust to SMPL [8]. The ground-truth
occupancy probabilities are obtained by determining whether points lie inside the ground-truth meshes. We evaluate each
subject’s model on all 7 test sequences and report the average score across.

2.2. Baselines

We illustrate our baseline methods in Fig. 2. We use the same set of hyper-parameters and network architectures for our
self-implemented baselines as described in Sec. 1. For backward skinning (Back-LBS), we extend the skinning network
to take the pose condition as input. Similar to how the pose is injected into the occupancy network, we reduce the pose
condition’s dimension to 8 using a linear layer (which is jointly trained with the other network parameters) and concatenate
this 8-dimensional embedding to the input of the skinning network. For backward displacement (Back-D), the displacement
network shares the same design as the backward skinning network, except for the output dimension. For NASA, we run the
official implementation using the default hyper-parameters1.

3. Supplementary Results
3.1. Additional results on 3D Minimally Clothed and Clothed Humans

We show additional qualitative comparisons with baselines on 3D minimally clothed humans in Fig. 3. Besides, we show
more qualitative results of various different subjects in diverse poses with clothing (Fig. 5) and minimal clothing (Fig. 4)
produced by our method. Finally, we demonstrate the learned skinning weights in Fig. 6.

3.2. Results on 3D Animals

As proof of concept and to demonstrate the flexibility of our approach, we also trained our model on 3D animal shapes.
We obtain the training data, namely meshes in different poses and the associated bone transformations, by randomly posing
the SMAL model [14], a parametric model of animals. As shown in Fig. 7, our model is able to faithfully recover skinning
weights for animal shapes by learning from the posed meshes without surface correspondence or skinning weights ground
truth. It further generates plausible shapes for different poses.

1https://github.com/tensorflow/graphics/tree/master/tensorflow_graphics/projects/nasa
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Figure 3: Qualitative Comparison to Baselines on Minimally Clothed Humans. Consecutive rows show two different
poses of the same subject: one pose within the data distribution in the first row and one pose outside the data distribution in
the second row. For some samples, Pose-ONet fails to produce meshes, hence the corresponding entries are blank.



Pose-ONet Back-D Back-LBS NASA Ours Ground Truth

Figure 3: Qualitative Comparison with Baselines on Minimally Clothed Humans. Consecutive rows show two different
poses of the same subject: one pose within the data distribution in the first row and one pose outside the data distribution in
the second row. For some samples, Pose-ONet fails to produce meshes, hence the corresponding entries are blank.



Pose-ONet Back-D Back-LBS NASA Ours Ground Truth

Figure 3: Qualitative Comparison to Baselines on Minimally Clothed Humans. Consecutive rows show two different
poses of the same subject: one pose within the data distribution in the first row and one pose outside the data distribution in
the second row. For some samples, Pose-ONet fails to produce meshes, hence the corresponding entries are blank.



Pose-ONet Back-D Back-LBS NASA Ours Ground Truth

Figure 3: Qualitative Comparison to Baselines on Minimally Clothed Humans. Consecutive rows show two different
poses of the same subject: one pose within the data distribution in the first row and one pose outside the data distribution in
the second row. For some samples, Pose-ONet fails to produce meshes, hence the corresponding entries are blank.



Figure 4: Qualitative Results on Minimally Clothed Humans. Consecutive rows show the same subject in diverse poses
outside the training distribution.
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Figure 5: Qualitative Results on Clothed Humans. Consecutive rows show the same subject in diverse poses outside the
training distribution.
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Figure 6: Visualization of Learned Skinning Weights. Skinning weights are overlayed on meshes extracted from the
canonical occupancy network with a random pose condition. Skinning weights for minimally clothed subjects are shown in
the first two rows, and skinning weights for clothed subjects are shown in the last two rows.

Figure 7: Qualitative Results on Animals. The first column shows the learned skinning weights in canonical space.



References
[1] Ijaz Akhter and Michael J. Black. Pose-conditioned joint angle limits for 3D human pose reconstruction. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2015. 3
[2] Matan Atzmon and Yaron Lipman. SAL: Sign agnostic learning of shapes from raw data. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2020. 1
[3] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dynamic FAUST: Registering human bodies in motion. In

Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017. 3
[4] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of computation, 19(92):577–593,

1965. 2
[5] Boyang Deng, JP Lewis, Timothy Jeruzalski, Gerard Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and Andrea Tagliasacchi.

Neural articulated shape approximation. In Proc. of the European Conf. on Computer Vision (ECCV), 2020. 2
[6] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge
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