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We provide in this document additional details and re-
sults that cannot fit into the main manuscript due to the
page limit. Section 1 summarizes our training strategy for
the proposed SeBoW, and Section 2 offers additional exper-
imental results. Section 3 provides more implementation
details, and Section 4 concludes this document with more
visualization results.

1. Training Strategy of SeBoW

In this section, we give a more detailed description of the
training process of the proposed self-born wirings (SeBoW)
for neural tree. The training of the proposed model follows
two stages: search phase and retraining phase.

In the search phase, SeBoW begins with a densely con-
nected architecture as the search space, which is imple-
mented by unpacking base learnings from a DNN, installing
routers, and mounting solvers, as described in the main pa-
per. The learners are used for representation learning, the
routers for routing the data flow through the network, and
the solver for making the final predictions for the task. Spe-
cially, the routers comprise two modules: senders and re-
ceivers. The senders are devised for passing the output of
the current learners to the next learner, and the receivers for
aggregating the output data from previous learners as the
input for the current learners.

Algorithm 1 summarizes the whole training procedure in
the search phase of SeBoW. As described in Line #4 ~ 6
in the algorithm, we initialize the parameters of receivers w
with a uniform distribution prior to training. Each learner
in the search space should receive data from the previous
learners or the initial input, as shown in Line #15 ~ 17.
After that, the learner in this node is used for representa-
tion learning (Line #19). The router r and learned repre-
sentations are used to compute the conditional probability
of passing the data to the following learners (Line #21).
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Algorithm 1: Tree Search Phase of SeBoW

1 Define: a densely connected architecture as search space.

2 Define: model operations ©, including learners [, routers
(senders 7 and receivers w), solvers s.

3 Define: probability of reaching the j-th node in section % as pé.,
feature of reaching the j-th node in section 7 as x;

4 for each receiver w do

5 Initialize w by sampling from a uniform distribution;

6 end

7 for each training iteration e do

8 Sample mini batch of data and labels (x¢,ye) € (X,Y);

9 Set the Initial input probability as p% —1;
10 Set the Initial input data as x% — Xe;
11 Reset label prediction probability and node probability to O;
12 for each section i do
13 for each node j do
14 if section 1 is not root then
15 Outputs from previous section:
Yl ey hys heye, ek
16 Forward discrete decision making:

h; = one_hot{arg max,, (log w;. e) Fent

> More details in the main manuscript;

i i yi—1.
17 X; hj Y N
18 end
19 y; < lj (xj), > Data transformer;
20 if section 1 is not leaf then
i+l i1 i1 _
21 P P5 "“’pCi+1/C]+7
p;-7; (y]')!
22 else
23 Compute label predictions:
[P1,P2,...,PN] += P} - 5;(y;):
24 end
25 end
26 end
27 Optimise parameters via gradient descent [10] on negative

log-likelihood loss J
28 end

When the data is transferred to leaf learner, solver s is acti-
vated for the final prediction (Line #23).



Algorithm 2: Neural Tree Optimization

1 Define: selected architecture.

2 Define: model operations O, including learners [, routers r and
solvers s.

3 Define: probability of reaching the j-th node in section % as pé.,

feature of reaching the j-th node in section ¢ as x;

4 for each training iteration e do

5 Sample mini batch of data and labels (x¢,ye) € (X,Y);
6 Set the Initial input probability as p% —1;
7 Set the Initial input data as x1 < xe;
8 for each section i do
9 for each node j do
10 y;- — l; (xz), > Data transformer;
11 Find child in next section as C'Is;
12 if section i is not leaf then
1 PCT Pl i (yh);
14 xg}ls — yf ;
15 else
16 Compute label predictions:
Pcrs + pj - s;(yy):
17 end
18 end
19 end
20 Optimise parameters via gradient descent on negative
log-likelihood loss J
21 end

The final category prediction result is expressed as the
product of the category prediction made by the solver and
the probability of reaching the solver. Since we obtain
the final label prediction, the negative log-likelihood loss
is adopted to optimize the whole network (Line #27). It
is worth noting that the variable h; will be relaxed using
the Gumbel-softmax [6] function during backward propa-
gation. This sampling distribution changes from being uni-
form to sharp as the temperature decreases.

After sampling the final architecture with model param-
eters, we begin the optimization of the selected architecture
using Algorithm 2. Due to the unification of probability and
data allocation in the retraining phase, we removed the re-
ceiver modules, resulting in a neural tree with an explicit
parent-child relationship. Similarly, in the neural tree, data
transformation is performed by the learner /, and probabil-
ity calculation is implemented by the router r. Each node is
capable to transmit its output to the children of a particular
set (Line #11 ~ 14). Eventually, the model parameters are
updated using negative log-likelihood loss in Line #20.

2. Additional Experiments

More mother DNNs. We apply our SeBoW framework
on the ResNet18-based search space to further evaluate the
generalization ability of our method. We search for sev-
eral architectures with different parameters, then compare
them with the original ResNet-18 model and neural trees
on CIFAR-10, CIFAR-100, and tiny-ImageNet classifica-

Method Params. Accuracy (%)
MobileNet [5] 22M 85.90 (£0.23)
VGG-13[12] 28.3M 92.51 (£0.15)
ResNet-18 [4] 11.2M 92.98 (£0.17)
ANT-CIFARIO-C [14] 0.7M | 0.5M 90.69 / 90.66
ANT-CIFARI0-B [14] 0.9M / 0.6M 90.85190.82
ANT-CIFARIO-A [14] 1.4M | 1.0M 91.69/91.68
ANT-CIFARIO-A (ensemble) [14]  8.7M | 7.4M 92.29192.21
XOC [1] +ResNet-18 > 11.2M 93.12 (£0.32)
SeBoW-A 1.OM/0.7M  93.45(40.12)/93.41
SeBoW-B 27M/1.6M  94.00 (10.18)/93.93
SeBoW-C 5.8M/4.6M  94.33 (1+0.14)/94.24
SeBoW-ResNet18-A 1.4M/1.3M  93.87 (£0.09)/93.79
SeBoW-ResNet18-B 3.1M/24M  94.39(10.11)/94.29
SeBoW-ResNet18-C 9.6M/9.6M  95.31 (1+0.07)/95.31

Table 1. Performance comparison on CIFAR-10. Underlined num-
bers denote the results of single-path inference, /falic fonts denote
that the results are taken from the original paper, and “N/A” means
not applicable.

Method Params. Accuracy (%)
MobileNet [5] 2.4M 53.91 (£0.32)
VGG-13 [12] 28.7M 72.70 (£0.42)
ResNet-18 [4] 11.2M 72.28 (£0.28)
ANT-Extend [14] 4.2M/4.2M 65.81 (£0.12) / 65.71
SeBoW-B 19M/1.5M 71.79 (£0.23) / 71.59
SeBoW-C 4.2M/4.2M 74.59 (£0.33) / 74.59
SeBoW-ResNet18-B 3.4M/2.5M 73.97 (£0.15)/ 73.83
SeBoW-ResNet18-C 124M/9.7M  76.91 (40.12) / 76.79

Table 2. Performance comparisons on the CIFAR-100 dataset.

Method Params. Accuracy (%)
MobileNet [5] 2.5M 46.12 (£0.73)
GoogleNet [13] 6.8M 48.85 (£0.52)
VGG-13 [12] 28.7M 56.10 (£0.57)
ResNet-18 [4] 11.2M 55.32 (£0.75)
SeBoW-C 8.4M / 4.8M 58.77 (£0.39) / 58.43
SeBoW-ResNet18-C 13.2M/9.7M  58.59 (+0.41) / 58.38

Table 3. Performance comparison on the tiny-ImageNet dataset.

Dataset Method Fine-tuning Retraining Params.
CIFAR10 SeBoW-A  91.65 (£0.04)  93.45 (£0.12) 1.0M
SeBoW-B  92.83(40.15)  94.00 (£0.18) 2. M
SeBoW-B  70.21 (£0.11)  71.79 (£0.23) 1.9M
CIFARI00 SeBoW-C  72.89 (+0.17)  74.59 (4+0.33) 4.2M

Table 4. Performance of SeBoW with retraining or fine-tuning in
the second phase.

tion tasks. Quantitative data can be seen in Tables 1, 2 and
3. As can be seen, our proposed SeBoW-ResNetl8 pro-
motes the accuracy of ResNet-18 on CIFAR-10, CIFAR-
100 and tiny-ImageNet by 2.37%, 4.51% and 3.06% with
1.6M, 1.5M, 1.5M fewer parameters respectively.



Small Datasets

Medium Datasets

Large Datasets

[32 x 32] [64 x 64] [224 x 224]
Hyper Parameter CIFAR10 and CIFAR100 [2] tiny-ImageNet [8] ImageNet [3]
Learning Rate 0.1 0.1 0.05

Optimiser SGD with 0.9 momentum SGD with 0.9 momentum SGD with 0.9 momentum
. decay it by half decay it by half decay it by 10
Learning Rate Update for every 20 epoch for every 20 epoch for every 30 epoch

Initialisation of Receivers

uniform distribution

uniform distribution

uniform distribution

N/A N/A N/A
Temperature 10 10 10
peratu N/A N/A N/A

Temperature Decay

decay it by the current epoch

decay it by the current epoch

decay it by the current epoch

N/A N/A N/A
. 1074 10~4 1074
Weight D
clgnt Decdy 5x 104 5x 104 5x 1074
Scheduler - - Cosine Annealing
. 32 (per GPU)
Batch Size 128 128 for 4 GPUs
Epochs 100 100 150

Table 5. The complete set of hyper-parameters used in our method. Texts in bold font denote the hyper-parameters used in retraining phase,
which are diverse from those utilized in search phase. “N/A” means not applicable.

Retraining versus fine-tuning. After conducting the ar-
chitecture search in the first phase, we retrain the searched
neural tree from scratch with random initialization in the
second phase. Here we make comparisons between retrain-
ing and fine-tuning in this phase. Results are shown in Ta-
ble 4, where retrained models achieve higher accuracy than
fine-tuned models by a noticeable margin. It coincides with
the observations in [9], where retrained models with ran-
domly initialized weights are found to give superior perfor-
mance to fine-tuned ones when structured pruning is carried
out.

3. Implementation

For reproducibility, we present additional implementa-
tion details during two phases in Table 5, across all SeBoW
variants and datasets evaluated in the main manuscript. If
the two phases have different hyper-parameters, we will il-
lustrate them in bold. Since we remove the receiver mod-
ules in the second phase, the initialization method and tem-
perature for gumbel-softmax become inapplicable. Also,
we set the weight decay 10~ for faster convergence in the
first phase and 5 x 10~* for more stable training in the sec-
ond phase. We provide further details on data preprocess-
ing, which are summarized as follows.

CIFAR and tiny-ImageNet. We adopt the standard image
preprocessing scheme widely used in the literature [14, 4],
including zero-padded with 4 pixels on each side, random
cropping, random horizontal flipping, and image normaliza-
tion.

ImageNet. Our implementation for ImageNet follows the
practice in [12, 3, 4]. The input image is resized by setting
its shorter side to 256, then a 224 x 224 crop is randomly
sampled from this image or its horizontal flip. The stan-
dard color augmentation and image normalization operation
in [7] are used.

4. Neural Tree Visualizations

We have presented the architecture visualization of
SeBoW-C model on CIFAR10 dataset in the main
manuscript. Here we provide more visual results of the Se-
BoW neural tree.

Figure 1 (a-c) displays the tree visualization of various
architectures on CIFAR10. We observe that some of the
grouping strategies learned by SeBoW share similarities
with human intuition: for example, categories belonging
to animal (e.g., deer and dog) show significant correlations
across branches of these three architectures.

The SeBoW architecture discovered on CIFARI100 is
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(c) SeBoW-C-CIFAR10
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Figure 1. Ilustration of various SeBoW architectures on CIFAR10 and CIFAR100 datasets. The category histogram corresponds to the
category distribution under the same color branch point. Black circles represent learners, circles in blue or coral donate the routers, and

white circles of the final layer are solvers. All the visualization results correspond to the experimental results of the main manuscript.

shown in Figure 1 (d). As we know, the categories in
CIFAR100 are semantically divided into 20 superclasses,
based on which we analyze the interpretability of the de-
rived tree from SeBoW. For convenience, in what follows,
superclasses are shown in blue italics. As members of
the superclass people in CIFAR100, categories baby, mail
child, girl, man, and woman are on the same branch of the
neural tree, while categories maple, oak, palm, pine, and
willow on another branch correspond to the tree superclass.
Certainly, the branching results of network architecture are
not always equivalent to the inter-class relationships derived
from the semantics of dataset. Whales and beavers belong
to the same superclass aquatic mammals, whereas SeBoW
assigns them to different branches: whales and sharks (per-
taining to fish) on the one side, beavers and mice (belonging
to small mammals) on the other side.

We also visualize the network architecture produced on
tiny-Imagenet in Figure 2. It can be seen that balls (vol-
leyball and basketball), socks (sock and christmas stock-
ing), and large animals (brown bear, american alligator,
bison and african elephant) are first separated from all cat-
egories by branch 2. The remaining categories form branch

1, which are further split into branches 3 and 4 at the deeper
level. We can analyze the pertinent branching basis from
visual cues. Machines contain tractor, crane, cash ma-
chine and sewing machine are on the branch 3, and cylin-
drical objects including forch, oboe, maypole and plunger
are on branch 4. Unlike some hierarchical classification
methods [15], SeBoW does not enforce the categories of
different branches to be disjoint, so as to explore the re-
lationships between categories under the characteristics of
different branches freely with less external constraints. For
example, centipede appears on branch 1, 2, and 4. Diverse
features are mined from various branches of SeBoW, and
heatmaps are generated with features from the last convolu-
tional layer of different branches by Grad-CAM [11].

Through the above analysis, we summarize the follow-
ing three findings. Firstly, the branching for categories of
the network is mainly based upon visual cues rather than
semantic similarities defined by humans. Secondly, the fea-
tures of neural tree become specialised to the partitioned
space after branching. Thirdly, most architectures learn
multiple levels of shared characteristics before resorting to
branch.
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Figure 2. Illustration of the discovered architecture for SeBoW on tiny-ImageNet. Histograms show the class distributions at respective
branches. We show heatmaps of three leaf nodes in SeBoW with a centipede image as input.
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