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1. Experimental Setup
In this section, we introduce the implementation details of our experiments. First, we quantize standard ResNet-18,

ResNet-50 [4], and MobileNet-V2 [6] architectures to justify the proposed method. Unless explicit mention of the contrary,
these models are pre-trained on ImageNet dataset [2] and taken from the Pytorch model zoo.

As for mixed-precision quantization, the candidate bit-widths of weight are {1, 2, 3, 4, 5, 6, 7, 8} for each architecture by
default. We quantize the activation of the first and last layer with 8 bit, and the intermediate layers are quantized uniformly
with lower bit-width.

To compensate for the accuracy degradation, we will perform fine-tuning through the standard Straight-Through Estimator
(STE) [1] for each quantized network. Specifically, we adopt the standard data augmentation refers to [4], which resizes the
image first such that the shorter side is 256 and then randomly samples a 224 × 224 crop from the image or its horizontal
flip, with the per-channel mean subtracted. Besides, We use SGD with a momentum of 0.9 and a mini-batch size of 256.
The learning rate starts from 0.005 and anneals with the cosine learning rate scheduler. As we expect that low-precision
quantization will reduce the tendency to overfit, we train the models with a weight decay of 5e− 5 for 30 epochs.

2. Computational Complexity
In this section, we analyze the computational complexity of the proposed method. As shown in Algorithm 1, the

computational cost of our method is mainly composed of two parts, namely the calculation of loss perturbation and the
greedy-search to solve MCKP.

For the calculation of loss perturbation, we denote the number of training images as N and the computational complexity
of network forward/backward propagation for a single image as T . Then its total computational complexity is O(NT ). As
shown in the Figure 1, the loss perturbation converges rapidly and a few hundred of images are enough for its approximation.

For greedy-search to solve MCKP, we denote the number of candidate bit-widths and layers as |B| and L, respectively.
First, the computational complexity of picking the largest element from an unordered sequence is O(L). As the maximum
number of iterations of the loop is |B|L, its total computational complexity is O(|B|L2).

3. Theoretical Analysis on the Hessian Matrix Approximation
In this section, we provide a theoretical analysis of the Hessian matrix approximation. In summary, we first give the

conditions under which the approximated Hessian matrix equals to the true one. Second, We give the upper bound of the
difference between the approximated Hessian matrix and the true one.

Consider a supervised machine learning problem of predicting outputs y ∈ Y from inputs x ∈ X. We assume a prob-
abilistic model for the conditional distribution of the form pθ(y|x) = p(y|f(x, θ)), where p(y|·) is an exponential family
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with natural parameters in F and f : X × Ω → F is a prediction function parameterized by θ ∈ Ω. Given N i.i.d. training
samples DN = {x(n),y(n)}Nn=1, we want to minimize

L(θ) = − 1

N

N∑
n=1

log pθ(y
(n)|x(n))

= − 1

N

N∑
n=1

log p(y(n)|f(x(n), θ)).

(1)

We will analyze on the basis of this framework as it covers common scenarios such as least-square regression with fixed σ2

Y = F = R
p(y|f) = N(y; f, σ2)

(2)

or C-class classification
Y = {1, . . . , C},F = RC

p(y = c|f) = exp(fc)/
∑
i

exp(fi)
(3)

for an arbitrary prediction function f (e.g. CNNs). It should be noted that here pθ(y|x(n)),instead of f(x(n), θ), denotes the
final output of the model, which is different from the main body of the paper. Besides, we define pDN (y|x(n)) as the data
distribution and pθ(y|x(n)) as the model distribution.
Based on the above notations, we define the Hessian matrix as

H(θ) = ∇2
θL(θ)

= − 1

N

N∑
n=1

∇2
θ log pθ(y

(n)|x(n))

=
1

N

N∑
n=1

Ey∼pDN (y|x(n))[−∇2
θ log pθ(y|x(n))].

(4)

The Hessian matrix approximation can be rewritten as

H̃(θ) =
1

N

N∑
n=1

1

pθ(y(n)|x(n))2
[∇θpθ(y

(n)|x(n))∇θpθ(y
(n)|x(n))T ]

=
1

N

N∑
n=1

[ 1

pθ(y(n)|x(n))
∇θpθ(y

(n)|x(n))
][ 1

pθ(y(n)|x(n))
∇θpθ(y

(n)|x(n))T
]

=
1

N

N∑
n=1

∇θ log pθ(y
(n)|x(n))∇θ log pθ(y

(n)|x(n))T

=
1

N

N∑
n=1

Ey∼pDN (y|x(n))[∇θ log pθ(y|x(n))∇θ log pθ(y|x(n))T ].

(5)

Besides, we introduce the Fisher information matrix [5] as

F (θ) =
1

N

N∑
n=1

Ey∼pθ(y|x(n))[∇θ log pθ(y|x(n))∇θ log pθ(y|x(n))T ]

=
1

N

N∑
n=1

Ey∼pθ(y|x(n))[−∇2
θ log pθ(y|x(n))].

(6)



The second equality of Eq. (6) may seem counterintuitive. To see why, apply the chain rule on it and then we have

Ey∼pθ(y|x(n))[−∇2
θ log pθ(y|x(n))] = Ey∼pθ(y|x(n))[−

1

pθ(y|x(n))
∇2

θ pθ(y|x(n))]

+ Ey∼pθ(y|x(n))[∇θ log pθ(y|x(n))∇θ log pθ(y|x(n))T ].

(7)

The first term on the right side of Eq. (7) is zero, since

Ey∼pθ(y|x(n))[−
1

pθ(y|x(n))
∇2

θ pθ(y|x(n))] = −
∫

1

pθ(y|x(n))
∇2

θ pθ(y|x(n))pθ(y|x(n))dy

=

∫
∇2

θ pθ(y|x(n))dy = ∇2
θ

∫
pθ(y|x(n))dy

= ∇2
θ[1] = 0.

(8)

And the reserved second term is exactly what we expect. To sum up, we have the following three matrices:

H(θ) =
1

N

N∑
n=1

Ey∼pDN (y|x(n))[−∇2
θ log pθ(y|x(n))] (9)

H̃(θ) =
1

N

N∑
n=1

Ey∼pDN (y|x(n))[∇θ log pθ(y|x(n))∇θ log pθ(y|x(n))T ] (10)

F (θ) =
1

N

N∑
n=1

Ey∼pθ(y|x(n))[∇θ log pθ(y|x(n))∇θ log pθ(y|x(n))T ]

=
1

N

N∑
n=1

Ey∼pθ(y|x(n))[−∇2
θ log pθ(y|x(n))]

(11)

Then it’s easy to get the following conclusion.

Proposition 1. If 1) the number of observed data is large enough N → ∞, and 2) the data distribution equals to the model
distribution (i.e., pDN (y|x(n)) = pθ(y|x(n))), the Fisher equals to the approximated and true Hessian, namely

H̃(θ) = F (θ),H(θ) = F (θ) =⇒ H̃(θ) = H(θ) (12)

As the observed data and model capacity is limited, the conditions in Proposition 1 are not strictly met usually. Furthermore,
we show that the difference between the approxiamted and true Hessian can be bounded by the residuals and the smoothness
constant of the model f .

Proposition 2. Let L(θ) be defined as in Eq. (1) with F = RM . Denote by f (n)
m the m-th component of f(x(n), ·) : Ω → RM

and assume each f
(n)
m is β-smooth. Let H̃(θ) and H(θ) be the approximated and true Hessian, respectively. Then,

‖H(θ)− H̃(θ)‖22 ≤ r(θ)β (13)

where r(θ) =
∑N

n=1 ‖∇f log p(y(n)|f(x(n), θ))‖1 and ‖ · ‖2 denotes the spectral norm.

The approximation improves as the residuals in r(θ) diminish, and is exact if the data is perfectly fit, which is consistent with
Proposition 1.
To prove the proposition, we drop θ from the notation for brevity, then the Hessian can be expressed as

H = H̃ +

N∑
n=1

M∑
m=1

r(n)m ∇2
θf

(n)
m , (14)



where r
(n)
m = −∂log pθ(y

(n)|f(n))

∂f
(n)
m

. If all f (n)
m are β-smooth, their Hessians are bounded by −βI � ∇2

θf
(n)
m � βI and

−
∣∣∣∣∑
n,m

r(n)m

∣∣∣∣βI � H − H̃ �
∣∣∣∣∑
n,m

r(n)m

∣∣∣∣βI (15)

Pulling the absolute value inside the double sum gives the upper bound∣∣∣∣∑
n,m

r(n)m

∣∣∣∣ ≤ ∑
n,m

|r(n)m | =
∑
n

∑
m

∣∣∣∣∂log pθ(y
(n)|f (n))

∂f
(n)
m

∣∣∣∣ = N∑
n=1

‖∇f log p(y(n)|f(x(n), θ))‖1 (16)

Finally, substitute Eq (16) into Eq (15) and the proof is completed.

4. Empirical Analysis on the Hessian Matrix Approximation
As the approximation of Hessian matrix is the core of our method, except for the theoretical analysis, here we provide

some additional empirical analysis. We denote the real Hessian by Hw and make a two-step approximation of it. First in eq
(6), we ignore the first term in the rhs and denoted the approximation by H̃w. Second in eq (12), we assume the Hessian
is block-diagonal and denote the approximation by H̃block

w . We denote the loss perturbations obtained from above Hessian
as ∆L, ∆L̃ and ∆L̃block. As the cost of analyzing Hessian matrix is too huge, we instead compare the corresponding loss
perturbations. We randomly sample 100 different bitwidth allocations for ResNet18 with the target compression ratio of 8x
and compute the above three loss perturbations for each one. The results are summarized in the first two subfigures of Figure
1. The x-axis and y-axis of the left and middle subfigure are ∆L v.s. ∆L̃ and ∆L̃ v.s. ∆L̃block respectively. As these points
are roughly distributed on a straight line passing through the origin with a slope of one, we justify the effectiveness of our
approximation empirically.

Besides, we compare our approximation with HAWQ-V2[3]. Similarily, we randomly sample 50 bitwidth allocations and
compare the difference between the true loss perturbation(∆L̃true) and the two approximated ones(e.g. |∆Ltrue−∆L̃

∆Ltrue
|×100).

The results in the right subfigure of Figure 1 show that our approximation is superior to HAWQ-V2 in the estimation of loss
perturbation.

0 1 2 3 4 5
loss pertub with Hw

0

1

2

3

4

5

lo
ss

 p
er

tu
b 

wi
th

 H
w

0 1 2 3 4 5
loss pertub with Hw

0

1

2

3

4

5

lo
ss

 p
er

tu
b 

wi
th

 H
bl

oc
k

w

0 10 20 30 40 50
random seed

0

40

80

re
la

tiv
e 

pe
rc

en
ta

ge
 e

rro
r

Our approx
HAWQ-V2 approx

Figure 1. Analysis for Hessian Approximation
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