Supplementary Material:
Dense Deformation Embedding Network for Template-Free
Shape Correspondence

In this supplementary material, we first provide detailed
architecture of the Extrinsic-Intrisic Autoencoder and the
global embedding baseline, in Sec. 1. We then describe
the details on construction of the mesh hierarchy in Sec 2.
In Sec. 3, we provides more analysis on the effect of the
Extrinsic-Intrisic Autoencoder. Sec. 4 provides more ab-
lation studies on employed losses. We evaluate the model
complexity in Sec. 5. Sec. 6 provides more details on the
methods that we compare with in the experiments of the
main paper. In Sec. 7, we show more qualitative results on
mesh deformation. In Sec. 8, we provide more visualization
results for applications of our model in human pose transfer,
shape retrieval and shape interpolation.

1. Network Architecture
1.1. Extrinsic-Intrinsic Autoencoder

As shown in Figure 1, we present the detailed architec-
ture of our proposed Extrinsic-Intrinsic Autoencoder (EI-
AE). It consists of a two-layer encoder and a three-layer de-
coder. We apply BatchNorm and ReLU after each convolu-
tion layer, except for the bottleneck layer where the canon-
ical shape C is directly output by a convolution layer. With-
out specification, we apply a 10D shared canonical shape C
(i.e., e = 10). We also apply 3D shared canonical shape in
ablation study.
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Figure 1. The architecture of the Extrinsic-Intrinsic Autoencoder.

1.2. Baseline

Figure 2 illustrates the architecture of our global embed-
ding (GE) baseline. It employs the same Siamese mesh
encoder F, and deformation decoder Dy as our proposed
UD?E-Net. The only difference between them is that the

GE baseline removes the EI-AE and directly concatenates
source local features X ¢ with the target global feature h; as
deformation embeddings.
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Figure 2. The architecture of the global embedding baseline.

2. Mesh Hierarchy

As shown in Figure 3, we utilize the Gra-
clus algorithm [5] to construct the mesh hierarchy
(My, My, M3, My), where the coarsest mesh My is the de-
formation graph G and M is the input mesh. We construct
mesh hierarchy for two main purposes. First, the meshes
are downsampled to enable graph pooling on feature maps,
which can not only reduce number of parameters and
computational complexity by scaling down the size of
feature maps but also enable Graph Convolution Networks
(GCNs) to better aggregate information with enlarged
receptive field sizes and learn hierarchical representations.
Second, we downsample the input mesh to utilize the
derived low-resolution mesh as the deformation graph G.

Recently, DEMEA [15] also defines graph convolutions
on a mesh hierarchy to learn deformation embeddings for
a deformation graph. However, in [15], the mesh hierar-
chy is computed once prior to the training process using
QEM based methods. This requires all training data to
share the same topology, which vastly limits its applica-
tion. We address this challenge by using the Graclus al-
gorithm to downsample the graph in real-time simultane-
ously with the forwarding of the network, due to its high
efficiency. Graclus traverses all nodes in the graph and in
each step greedily merges two unmarked nodes that maxi-



mize the local normalized cut w;;(d; ' + d;l), then mark
them as visited. When all nodes are visited, the graph has
approximately half of the nodes. The graph hierarchy can
be obtained by repeating this process until required resolu-
tion. Due to randomness of the algorithm, the derived mesh
hierarchy can be updated dynamically, which also improves
the generalization ability for GCNs.

Moreover, the vertex number of each mesh level is also
not fixed. The vertex number of the input mesh is fixed as
2757, whereas the rest mesh levels have around 1480, 800,
430 vertices, respectively.

Figure 3. The mesh hierarchy generated by Graclus algorithm [5].

3. Effect of the Extrinsic-Intrinsic Autoencoder

In this section, we provide more visualization results for
the proposed EI-AE. As shown in Figure 4, we visualize
the learned 10D shared canonical shape C via t-SNE [16].
Similar to the 3D shared canonical shape, the 10D shared
canonical shape also presents the shape of the skeleton of a
body. However, without the guidance of the bounded Max-
imum Mean Discrepancy (MMD), the EI-AE fails to form
a compact canonical shape, which demonstrates the indis-
pensable role of the introduced bounded MMD.

Figure 4. Visualization of 10D shared canonical shape C via t-
SNE, where the left is the input shape and the top-right and
bottom-right are the learned C with and without bounded MMD,
respectively.

4. More ablation studies
4.1. Bounded Maximum Mean Discrepancy

We conduct ablation studies about 3 in Equation. 6 of
the main paper among {0,0.01,0.1} on SURREAL (230k)
dataset. As shown in Table 1, the performance is better
when 5 > 0, and is not quite sensitive to the choice of 5.
It proves that the hinge loss prevents the feature corruption,
as illustrated in Section 3.3 of the main paper.

B 0 0.1 0.01
Cpg (cm) | 230 2.04 191

Table 1. Ablation studies about 8 on SURREAL (230k) dataset.

4.2. Cycle-Consistent Loss

Both bounded MMD and the cycle-consistent loss can
provide self-supervision for our UD?E-Net. Here we
discuss their effect on the construction of the canonical
shape C. We visualize the learned canonical shape in
Figure 5. Specifically, our model without MMD fails to
form a compact canonical shape. However, discarding the
cycle-consistent loss does not degenerate the representa-
tion, which proves the indispensable role of MMD over the
cycle-consistent loss.
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Figure 5. Representation visualization comparison with/without
MMD and cycle-consistent loss.

but without MMD but with MMD

5. Timing and model complexity

We measure the run-time of UD2E-Net on Faust Dataset.
It takes 68.32ms to process a pair of watertight meshes
with 6890 vertices. The measurements are performed on
an NVIDIA TITAN XP GPU across 500 runs. The entire
network has 3.26M parameters.

6. Comparison Methods

The methods we compare with can be divided into
deformation-based methods [7, 4, 9, 15], mesh autoen-
coders [ 13, 3] and spectral methods [10, 8, 6].

For deformation-based methods, 3D-CODED [7] de-
forms a fixed template to align with the input target shape.
It encodes the target shape globally into a 1024-D vec-
tor with a PointNet-like [12] encoder, then predicts a de-
formed location for each point on the template by decod-
ing the concatenation of the global vector and the point’s
location. The method is fully supervised with ground-truth
correspondences. It also has an unsupervised variant, which



we denote as Unsup. 3D-CODED in Table. 1,4 of the main
paper. Elementary [4] extends 3D-CODED by automat-
ically learning a better elementary structure from a shape
collection for shape reconstruction and matching. It also
deforms the input shape by predicting per-point locations
and is fully supervised. In all experiments, we apply its 3D
patch deformation variant, since it achieves the best perfor-
mance on Faust benchmark [1]. DEMEA employs an em-
bedded deformation layer based on [14] to deform a fixed
template to restore the input shape, which is also fully su-
pervised. LBS-Autoencoder [9] utilizes Linear Blending
Skinning (LBS) for deformation, which is self-supervised
with ground-truth joint rotation angles.

The mesh autoencoders [13, 3] encode the input mesh
into a latent code with graph convolutions, and then directly
decode it to restore the input mesh.

Spectral methods perform matching in the spectral do-
main. They are built upon a functional map representa-
tion [11] to learn descriptors for matching. FMNet [10]
is supervised with ground-truth correspondences. Halimi
et al. [8] assume isometric deformations and remove the su-
pervision by minimizing pair-wise geodesic distance distor-
tions. Ginzburg ef al. [0] introduce cyclic mapping, which
can generalize to non-isometric deformation and achieves
state-of-the-art performance among unsupervised methods.

Our proposed UD?E-Net outperforms above supervised
and unsupervised methods on SURREAL and DFAUST
dataset. On Faust benchmark [1], the proposed UDZE-
Net outperforms state-of-the-art unsupervised methods by
24%~37% on Inter challenge, and meanwhile achieves the
best on Intra challenge even comparing to supervised meth-
ods.

7. Qualitative Results

In Figure 6, we show more qualitative results for defor-
mation prediction on SURREAL 23k [17] dataset, where
comparing methods suffer from both unrealistic artifacts
and large reconstruction error due to large non-rigid defor-
mations, whereas our proposed UD?E-Net can yield more
natural and accurate deformations.

8. Applications

In Figure 7, we show more human pose transfer results
on DFAUST dataset [2], where the poses are successfully
transferred from the source shape to the target shape. In
Figure 8, we show more shape retrieval results on SUR-
REAL 23k dataset [17], where the poses of the query and
retrieved shapes are extremely similar.

Here, we further evaluate UD?E-Net on shape interpola-
tion task. Although UD2E-Net does not follow a strict Au-
toencoder architecture, which is known to be good at form-
ing a latent space, it turns out that UD2E-Net still forms

a surprisingly well-behaved latent space. Given two target
meshes, we linearly interpolate their global features hg, hy
by hipter(t) = (1 — t)hg + thy. As shown in Figure 9,
h;,te can yield plausible in-between meshes in both figure
and pose.
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Figure 6. Qualitative comparison on SURREAL 23k [17] with 3D
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Figure 7. Human pose transfer results. The first column shows Ao and Bo.
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Figure 8. Results of shape retrieval on SURREAL 23k [17], where the query shapes are on the left and retrieved shapes are on the right.
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Figure 9. Shape interpolation results.
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