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The following describes the content in each section in the supplementary material.
e § | provides further analysis and discusses the main limitations of the proposed model.
e § 2 shows additional results of landmark matching and regression.
e § 3 describes additional implementation details.
o § 4 details the proposed birds benchmark.
e § 5 demonstrates the effectiveness of the proposed method for the task of figure-ground segmentation.
e § 6 provides the numbers corresponding to Figure 4 in the main paper.

1. Further analysis

1.1. Visualization of feature embeddings

We visualize the first few PCA (uncentered) components of the learned model and a randomly initialized model in Fig. 1.
Specifically, we sample hypercolumns from 32 MAFL images using our contrastively pre-trained ResNet50, treat each spatial
location separately, and compute the PCA basis vectors. We then project the hypercolumns to each basis and visualize the
projection as a spatial map. Observe that the bases encode information about the background, foreground, and landmark
regions (e.g. eyes, nose, and mouth) of faces. On the other hand, the bases of a randomly initialized model show no such
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Figure 1. PCA visualization of the hypercolumn representation. From left to right: input image, and the projection of hypercolumns on
the first four PCA bases from a contrastively trained and a randomly initialized ResNet50.

1.2. Fine-tuning the network

Tab. 1.2 shows the effect of end-to-end fine-tuning of all layers of our model for landmark regression. In this experiment,
we use the output of the fourth convolutional block of ResNet50 as the representation, which is the optimal single layer
representation. We did not find fine-tuning to be uniformly beneficial — fine-tuning is worse than training the linear regressor
only on MAFL dataset, while it is better on AFLW dataset. We speculate the reason to be the domain gap between the datasets
used for unsupervised learning and supervised learning of the regressor, which is exacerbated by the small training sets. For
example, AFLW has a larger domain gap than CelebA to MAFL, which is also noticed in DVE [4].



MAFL AFLW,; AFLWp 300W

w/o fine-tuning ~ 2.73 8.83 7.37 6.01
w/ fine-tuning 2.81 7.80 6.99 5.94

Table 1. Effect of fine-tuning for landmark regression. The fourth block of a ResNet50 network was used as the representation.

1.3. Memory efficiency

Tab. 1.3 compares the memory efficiency of DVE [4] to ours. DVE maintains high-resolution feature maps across the
network hierarchy to compute the equivariance loss. By comparison, our contrastive learning loss is computed on a global
image representation which requires less memory, allowing bigger models. Our method with a “ResNet50-half”, which halves
the layer width of the original network, achieves comparable performance with DVE (see Tab. 4 and Tab. 5) but is more
memory-efficient.

Method Network # Params (M) Network Size (MB) Memory (MB)

DVE [4] Hourglass 12.61 48.10 491.85
ResNet18 11.24 42.89 11.54

Ours ResNet50-half 6.03 23.02 28.15
ResNet50 23.77 90.68 52.65

Table 2. Memory efficiency. Comparison of DVE [4] with ours in terms of number of network parameters (# Params), memory required for
storing the network (Network Size), and the memory usage of a forward and backward pass for a single 96 x 96 RGB image (Memory).

1.4. Effect of dimensionality reduction
Fig. 2 presents the landmark matching performance as a function of the projection dimension. Specifically, We evaluate

the cross-identity landmark matching on the MAFL test set with different projection dimensions. This usually improves
performance across all dimensions as the mean pixel error with hypercolumn representations is 6.16.
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Figure 2. Landmark matching performance as a function of the projection dimension. The mean pixel error of the raw hypercolumn
representations is 6.16 (not shown), which is higher than the projected representation across all dimensions.

1.5. Higher resolution images

Tab. 3 presents the performance of our model on higher-resolution images. Specially, we train our model on 128 x 128
CelebA and iNaturalist Aves images (instead of 96 x 96 used in the experiments in the main paper and DVE [4]), We conduct
the linear evaluation with 128 x 128 images from face and bird benchmarks. However, the memory and the computational
requirement is a challenge where our approach provides an advantage. A forward and backward pass on a single 128 x 128
image takes 8§74.41 MB for DVE with Hourglass network while it takes only 93.58 MB for the proposed model with ResNet50
as the backbone. While our method could be trained in 3 days on 128 x 128 CelebA images, we could not finish training DVE
with Hourglass or ResNet50 network in two weeks despite our best efforts. We notice that using higher resolution images
generally improves the performance across benchmarks.



Resolution  MAFL  AFLW,;, AFLWyr 300W CUB

96 x 96 2.44 6.99 6.27 5.22 68.63
128 x 128 2.34 6.87 6.41 4.99 72.61

Table 3. The effect of image resolution. We use ResNet5S0 with hypercolumn representations. We report the error in the percentage of
inter-ocular distance on human face dataset (lower is better), and the percentage of correct keypoints on CUB dataset (higher is better).

1.6. Limitations

Our method shares the limitations of many unsupervised learning approaches. Without supervision the landmark repre-
sentations are not guaranteed to be interpretable, though we show that semantic parts can be estimated with limited or no
supervision in many cases (see Fig. 5 in the main paper); The detailed nature of the emergence of equivariance and invariance
and their extension to other tasks (e.g. object detection) remains open and active area of research in the community.

2. Additional results of landmark matching and regression

We provide more experimental results of landmark matching and regression in Tab. 4 and Tab. 5 respectively. We report
results under various settings of (1) initialization methods (e.g., randomly initialized, ImageNet pre-trained, DVE [4], or the
proposed contrastively pre-trained); (2) network architectures (e.g., ResNet18, ResNet50, or ResNet50-half which halves
the layer width of ResNet50); (3) training dataset for representation learning (aligned or in-the-wild CelebA dataset); (4)
representations (hypercolumns or its projected features (+Proj.)). The proposed method surpasses DVE across different network
architectures, projected feature dimensions, and curated or uncurated datasets in both landmark matching and regression tasks.

3. Other implementation details

Training details of unsupervised learning models. We use MoCo [2] as our contrastive learning model. We train MoCo
for 800 epochs with a batch size of 256 and a cosine learning rate schedule as proposed in MoCo-v2 [1]. However, we did
not observe improvements in our task when using other tricks in MoCo-v2 [1], such as adding Gaussian blur for the data
augmentation and using an MLP as the projection network. We use the public implementation' of MoCo from [5]. For a
comparison with the DVE model [4] on the proposed bird dataset, we use their publicly available implementation”.

Training details of feature projection. We set the temperature hyperparameter 7 to 1,/7 in the equivariance loss (Equation
3 in the main text) for training the linear feature projector. We implement the linear projector as a 1 x 1 convolutional layer
and train the projector for 10 epochs on the CelebA dataset [3] with the equivariance loss. Notice that we do not apply any
data augmentations during training, and the training of feature projector does not require any human annotations. We use
Adam optimizer with a learning rate of 0.001 and a weight decay of 0.0005.

Training details of linear regression. (1) Data augmentation: we do not use any data augmentation when the entire
annotations of the training data are provided (Tab. 2 in the main paper). However, in the limited annotation experiments
on human face benchmarks, following DVE [4], we apply thin-plate spline as the data augmentation method with the same
deformation hyperparameters as DVE (Fig. 4a in the main paper). We do not apply any augmentations during landmark
regression on the CUB dataset (Tab. 2 and Fig. 4b in the main paper). (2) Validation: due to the lack of validation set on face
benchmarks, we train the linear regressor for 120, 45, and 80 epochs on MAFL, AFLW, and 300W dataset respectively when
hypercolumns are used, and we train for 150 epochs uniformly across these benchmarks when the compact representations of
the hypercolumn are used. On CUB, the results are reported from the checkpoint selected on the validation set. In the ablation
study of the effectiveness of unsupervised learning (Tab. 5 in the main paper), for the ImageNet pre-trained or randomly
initialized networks, we report the best performance on the test set within 2000 training epochs. (3) Learning rate: on face
benchmarks, we use an initial learning rate of 0.01 and a weight decay of 0.05 when only limited annotations are available
(Fig. 4a,b in the main paper). The two hyperparameters are 0.001 and 0.0005 respectively when the entire annotations are
given (Tab. 2 in the main paper); On CUB, if the number of annotations is smaller or equal to 100 (e.g. 10, 50, 100), we use an
initial learning rate of 0.01 and a weight decay of 0.05. The two hyperparameters are 0.01 and 0.005 respectively if more
annotations (e.g. 250, 500, 1241) are available. We apply the cosine learning rate schedule in all of our experiments.

Ihttps://github.com/HobbitLong/CMC
thtps://qithub.com/jamt9000/DVE


https://github.com/HobbitLong/CMC
https://github.com/jamt9000/DVE

Method Network #Params (M) In-the-wild +Proj. Dim. Same identity Diff. identity

Random ResNet50 23.77 3840 1.07 10.03
Random ResNet50 23.77 v 256 3.68 7.04
Random ResNet50 23.77 v 128 3.70 7.03
Random ResNet50 23.77 v 64 3.71 7.10
ImageNet ResNet50 23.77 3840 0.67 6.50
ImageNet ResNet50 23.77 v 256 0.82 3.15
ImageNet ResNet50 23.77 v 128 1.00 3.39
ImageNet ResNet50 23.77 v 64 1.55 4.44
DVE [4] Smallnet 0.35 64 1.28 2.77
DVE [4] Hourglass 12.61 64 0.92 2.38
DVE [4] Hourglass 12.61 v 64 1.27 3.52
Ours ResNet50 23.77 3840 0.73 6.16
Ours ResNet50 23.77 v 256 0.71 2.06
Ours ResNet50 23.77 v 128 0.82 2.19
Ours ResNet50 23.77 v 64 0.92 2.62
Ours ResNet50 23.77 v 3840 0.78 5.58
Ours ResNet50 23.77 v v 256 0.96 3.03
Ours ResNet50 23.77 v v 128 0.98 3.05
Ours ResNet50 23.77 v v 64 0.99 3.06
Ours ResNet50-half 6.03 3840 0.74 5.84
Ours ResNet50-half 6.03 N 256 0.76 2.18
Ours ResNet50-half 6.03 v 128 0.88 2.38
Ours ResNet50-half 6.03 v 64 1.05 2.85
Ours ResNet18 11.24 3840 0.64 4.95
Ours ResNet18 11.24 v 256 0.71 2.20
Ours ResNet18 11.24 N 128 0.82 2.31
Ours ResNet18 11.24 v 64 1.00 2.74

Table 4. Landmark matching. The mean pixel error between the predicted landmarks and the ground-truth (lower is better). Results better
than DVE’s are in bold.

4. Birds benchmark

The Birds benchmark consists of unsupervised learning on the images from the iNaturalist Aves taxa and evaluating them on
the landmarks in the CUB dataset. Specially, we randomly sample 100K images of birds from the iNaturalist 2017 dataset [0]
under “Aves” class. Fig. 3 top row shows images from iNaturalist Aves dataset. The dataset contains objects in significant
clutter, occlusion, and with a wider range of pose, viewpoint, and size variations than those in face benchmarks. Some images
even contain multiple objects. To test the performance in the few-shot setting, we sample a subset of the CUB dataset which
contains similar species to iNaturalist. Specifically, we sample 35 species of Passeroidea superfamily, each annotated with 15
landmarks. Fig. 3 bottom row shows images from the CUB dataset. We sample at most 60 images per class and conduct the
splitting of training, validation, and test set on the samples of each species in a ratio of 3:1:1. These splits are then combined,
which results in 1241 training images, 382 validation images, and 383 test images.

5. Figure-ground Segmentation

We extend the model to tackle a figure-ground segmentation task. Specifically, we train a 1 x 1 convolutional layer on the top
of the learned pixel representations to predict the foreground mask. We evaluate the segmentation model on the CUB dataset
described in Sec. 4, which comes with annotated masks. Tab. 6 compares representations from randomly initialized, ImageNet
pre-trained, and our contrastively learned networks under different sizes of the training set. The contrastive model is trained
on iNaturalist Aves dataset, as described in the main text. Under the linear evaluation setting where the backbone is fixed,



Method Network # Params (M) In-the-wild +Proj. Dim. MAFL AFLW,;, AFLWyp 300W

Random ResNet50 23.77 3840 4.72 16.74 11.23 11.70
Random ResNet50 23.77 v 256 6.56 20.33 13.50 11.67
Random ResNet50 23.77 N 128 6.21 20.25 13.99 17.12
Random ResNet50 23.77 v 64 6.28 19.76 13.53 16.93
ImageNet ResNet50 23.77 3840  2.98 8.88 7.34 6.88
ImageNet ResNet50 23.77 v 256 3.51 9.69 8.02 7.02
ImageNet ResNet50 23.77 v 128 3.36 9.11 7.68 6.55
ImageNet ResNet50 23.77 v 64 3.50 9.43 7.63 6.51
DVE Smallnet 0.35 64 3.42 8.60 7.79 5.75
DVE Hourglass 12.61 64 2.86 7.53 6.54 4.65
DVE Hourglass 12.61 v 64 3.23 8.52 7.38 5.05
Ours ResNet50 23.77 3840  2.44 6.99 6.27 5.22
Ours ResNet50 23.77 v 256 2.64 7.17 6.14 4.99
Ours ResNet50 23.77 v 128 2.71 7.14 6.14 5.09
Ours ResNet50 23.77 v 64 2.77 7.21 6.22 5.19
Ours ResNet50 23.77 v 3840  2.46 7.57 6.29 5.04
Ours ResNet50 23.77 v v 256 2.82 7.69 6.67 5.27
Ours ResNet50 23.77 v v 128 2.88 7.81 6.79 5.37
Ours ResNet50 23.77 v v 64 3.00 7.87 6.92 5.59
Ours ResNet50-half 6.03 3840  2.46 7.37 6.71 5.33
Ours ResNet50-half 6.03 v 256 2.66 7.21 6.32 5.20
Ours ResNet50-half 6.03 v 128 2.75 7.26 6.32 5.26
Ours ResNet50-half 6.03 N 64 2.85 7.42 6.45 5.42
Ours ResNet18 11.24 3840  2.57 8.59 7.38 5.78
Ours ResNet18 11.24 v 256 2.71 7.23 6.30 5.20
Ours ResNet18 11.24 v 128 2.81 7.30 6.32 5.30
Ours ResNet18 11.24 v 64 2.89 7.48 6.43 5.42

Table 5. Landmark regression. The error in the percentage of inner-ocular distance (lower is better). Results better than DVE’s are in bold.
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Figure 3. Images from bird datasets. Images in the CUB dataset (bottom) are iconic with birds more frequently in canonical poses and
contain a single instance. On the other hand, iNaturalist images (top) are community driven and less curated. Often multiple birds are in a
single image and are far away. This makes learning and transfer more challenging.
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the contrastive model with hypercolumn representation outperforms both the randomly initialized and ImageNet pre-trained
models. We are unable to get meaningful results for the ImageNet pre-trained model with fewer than 100 annotations and for a
randomly initialized network with the entire dataset. Fine-tuning the network end-to-end outperforms training only the linear
layer across different representations. Hypercolumns are more effective than the activations from the fourth convolutional
block with fine-tuning and linear evaluation (Tab. 6).

One observation is fine-tuning a randomly initialized network achieves good quantitative performance on this task. A closer
inspection, as presented in Figure 4, reveals that this is because the randomly initialized network simply generates a fixed



mask at the center of each test which results in high intersection-over-union with the object mask as most images from the
CUB dataset are object-centric (as shown in Fig. 3). Evaluation with a boundary-metric might reveal this difference. Our
model on the other hand achieves meaningful and highly accurate masks with as few as 10 training images, as shown in Fig. 4.

Self-supervision Backbone Hypercolumn # of annotation
“Sup Fixed? ypercoiu 10 50 100 250 1241
Random v v 0.00 0.14 0.01 0.00 0.12
ImageNet v v 0.12 0.08 0.22 0.51 0.66
Contrastive v v 036 052 059 0.61 0.62
Contrastive v X 037 045 0.51 052 0.53
Random X v 041 040 048 055 0.71
ImageNet X v 0.38 056 0.58 0.63 0.73
Contrastive X v 046 048 0.54 0.63 0.74

Contrastive X X 039 043 045 051 0.59

Table 6. Figure-ground segmentation on CUB dataset. We report the mean Intersection-over-Union (IoU) performance (higher is better)
using a ResNet50 network.

Ground Truth

Random
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Figure 4. Figure-ground segmentatlon on CUB dataset with 10 annotated 1mages as tramlng data. We fine-tune the network end-to-end
using the hypercolumn representation.

6. Tables for Figure 4 in the main paper

Tab. 7, 8, and 9 present the numbers corresponding to Fig. 4a, b, and ¢ in the main paper respectively. These describe the
effect of dataset size for landmark regression and unsupervised learning.
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- # of annotations
Self-supervision

1 5 10 20 50 100 10122
None (SmallNet) [4] 28.87 3285 2231 21.13 - - 14.25
DVE (Hourglass) [4] 1423 12.04 1225 1146 1276 11.88 7.53
+1.54 +2.03 +2.42 +0.83 +0.53 +0.16
Ours (ResNet50 + hypercol.) 42.69 25774  17.61 13.35  10.67 9.24 6.99
+5.10 +233 +0.75 +0.33 +0.35 +035
Ours (ResNetS0 + convd) 4374 21.25 1651 1245 10.03 9.95 8.05
+2.78 +1.14 +1.43 +0.66 021 +0.17
Ours (ResNet50 + 256D proj.) 28.00 1585 1298 11.18 9.56 9.30 7.17
+1.39 +0.86 +0.16 +0.19 +0.44 +0.20
Ours (ResNet50 + 128D proj.) 2731 1866 1339 1177 10.25 9.46 7.14
+1.39 +4.59 +0.30 +0.85 +0.22 +0.05
Ours (ResNet50 + 64D proj.) 2487 1515 13.62 11.77 11.57 10.06 7.21
+2.67 +0.53 +1.08 +0.68 +0.03 +045
Ours (ResNet18 + hypercol.) 47.15 2499 1740 1387 11.04 9.93 8.59
+6.88 +3.21 +0.37 +0.66 +0.92 +0.39
Ours (ResNet18 + convd) 38.05 21.71 16.60 14.48 1220 11.02 10.61
+525 +1.57 +0.61 +0.69 +0.36 £0.06

Table 7. Landmark regression with limited annotations on AFLW ;. The results are reported as the error in percentage of inter-ocular
distance (lower is better).

.. # of annotation
Self-supervision

10 50 100 250 500 1241
None (ResNet18) 297 10.07 11.31 2482 3886 52.64
DVE (Hourglass) [4] 37.82 51.64 5458 5678 58.64 61091
Ours (ResNet18 + hypercol.) 13.41 2591 3402 51.70 56.77 62.24
Ours (ResNet50 + hypercol.) 13.87 2928 40.86 5796 64.55 68.63

Ours (ResNet50 + 256D proj.) 16.32 38.70 48775 56.04 57774 61.22
Ours (ResNet50 + 512D proj.) 17.29 4390 4991 5796 5893  62.55
Ours (ResNet50 + 1280D proj.) 1894  47.02 50.75 57.24 59.89  63.25

Table 8. Landmark regression on bird dataset. The results are reported as percentage of correct keypoints (PCK). (higher is better).

Training set size

Methods Dimension 5% 0% 25%  50% 100%
DVE 64 - - - - 7.53
Ours 3840 1326 9.12 782 7.22 6.99

Ours+proj. 256 8.88 820 7.54 7.32 7.17

Ours+proj. 128 9.31 850 7.64 7.29 7.14

Ours+proj. 64 9.41 9.69 827 17.60 7.21

Table 9. The effect of training set size on unsupervised learning models. The results are reported as percentage of inter-ocular distance
on AFLW ; benchmark (lower is better).



