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Summary of Supplementary Material
In this supplementary material, we provide additional

qualitative results (examples) and numerical results, as well
as algorithmic and experimental details.
1. Explanations and insights into InSeGAN
2. How is the implicit template learned?
3. How to extend the framework for arbitrary number of

instances n?
4. Results on the synthetic setting with n = 10 cones
5. Qualitative instance segmentation results on real data
6. More on the neural architectures, synthetic data genera-

tion, and real robotic data collection setups.
7. Additional qualitative instance segmentation results.

1. InSeGAN: Insights and Why it Works
A curious reader of our work might ask, How does the

network learn to disentangle the depth image into each in-
stance poses and the implicit template? In particular, how
does it learn to disentangle the pose of each instance from
the depth image into a separate latent vector in Ẑ? And,
why does the network learn an implicit template model that
represents a single instance, rather than multiple instances
within a single template? This is, we believe, because of the
way the generator-discriminator pipeline is trained. For ex-
ample, let us assume for a moment that a single latent noise
vector z controls more than one (or in the extreme, all) of
the instances in a depth image. As z is randomly sampled
from a distribution, it is unlikely that only some of the vec-
tors in Z (the collection of n z vectors used as input to the
generator) would render the instances and some would not,
given that aggregation of all the generated instances should
match up to the number of instances in the input data—a
requirement that the discriminator will eventually learn to
verify in the generated images. Further, given that the object
appearances are varied, it is perhaps easier for the generator
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Figure 1. Qualitative results of InSeGAN segmentation on the syn-
thetic 10-cones dataset. We also show example segmentations pro-
duced by other methods.

to learn to render the appearance of a single instance than
to capture the joint appearance distribution for all instances,
which could be very large and diverse.

2. How is the Implicit Template Learned?
Note that the template is learned jointly with the rest

of the modules. The teplate is implemented as a PyTorch
weight tensor and is updated with the backpropagation gra-
dients from the losses. Simply put, when training the setup,
all the arrows in Figure 2 gets reversed, thus training the
template along with all of the other weights in the network.

3. Using Arbitrary Number of Instances n?
It is straightforward to extend InSeGAN for an arbitrary

number of instances n, which we do by using training im-
ages with varying numbers of instances. Assuming a max



of n instances in the training images, we have InSeGAN
sample a random number (≤ n) of pose vectors at the input
in Fig. 2 (paper). Further, we also add a simple module
that predicts the number of instances in the rendered image,
which is used to produce that many pose vectors. A loss
is enforced that ensures the number of sampled pose vec-
tors and the number of estimated pose vectors (by the in-
stance pose encoder) are the same. The rest of the pipeline
stays the same. At test time, the input depth image is passed
through the instance pose encoder, alongside the number of
estimated instances (by the additional module), and each
of the produced instance poses are decoded individually to
produce the segmentations. We implemented this variant of
our scheme and found that the GAN successfully learns to
match the new distribution, which is that of depth images
with varied instance count and produces instance segmen-
tations for arbitrary number of object instances. In Fig. 2,
we show results on the Cone class when we vary the count
between 4 and 9. On these data, we achieved 45.1% mIoU.

Figure 2. InSeGAN results when we use the same model to learn
distributions of images with varying number of instnaces. The
results show segmentation visualizations when we used 4–9 in-
stances in each of the depth images.

4. Synthetic Setting with 10 Cones

As introduced in Figure 1 of the main paper, we also
explored the scalability of InSeGAN to depth images with
more than 5 instances. Similarly to how we produced the
synthetic Insta-10 dataset with n = 5 instances in each cat-
egory, we produced an additional dataset using n = 10 in-
stances of cones, to explore how well our model handles
the more difficult case of depth images with twice as many
instances. As in the Insta-10 dataset, all 10 instances were
randomly dropped into a bin in sequence using a physics
simulator. Similar to each category in Insta-10, we created
10,000 depth images with 10 cones each, of which we used
100 for validation and 100 for testing. We did not use K-
Means to select difficult examples for our test set in the
10-instance setting, because the increased number of cones
means that every depth image in the set is cluttered and
quite challenging. We trained our InSeGAN model with ex-
actly the same setting and hyperparameters (except for the
number of instances n). Qualitative results are provided in
Figure 1. In Table 1, we quantitatively compare the perfor-
mance of InSeGAN on this dataset.

Method mIoU
KMeans 0.302

Spectral Clustering 0.324
Superpixels [9] 0.398

GrabCut+KMeans 0.021
InSeGAN 0.501

Table 1. Numerical comparison of InSeGAN vs. other methods on
challenging dataset with n = 10 cones in each image.
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Figure 3. Qualitative results on instance segmentation of real data.
We show the original depth images collected using a robot (first
row), the output of a masking and filtering step we do to clean up
the inputs (second row), the depth images hallucinated/rendered
by InSeGAN (third row), and the segmentations (fourth row).

5. Qualitative Results on Real Data

In Figure 3, we show qualitative results of instance seg-
mentation on real data. We also highlight the preprocessing
steps we follow to apply InSeGAN to this dataset, which
are necessary because the input depth images are very noisy
(e.g., jitter/spurious noise in the depth sensor, and hole-
filling that the sensor algorithm implicitly applies). These
steps often alter the object shape, for example, merging two
adjacent instances to appear as a single large object. To use
these depth images in our setup, we first masked out the sur-
rounding region (everything outside of the bin). This is pos-
sible because the bin is always at the same location. After
applying the mask, we thresholded the z values in the depth
image to only show z values greater than half the height of
a block instances. This provided a relatively clean depth
image, reducing the jitter and other artifacts (see Figure 3).
Next, we applied InSeGAN to these preprocessed images.
The qualitative and quantitative results (in the main paper)
show that InSeGAN is very successful in segmentation on
these images ( 85% mIoU).

6. Data Collection Setup

In this section, we detail our synthetic and real-world
data collection setups.



6.1. Physics Simulator and Depth Image Generation

As described in the main paper, we use the NVIDIA
PhysX physics simulator1 to create our Insta-10 dataset. A
screenshot of this simulator software setup is shown in Fig-
ure 5. Specifically, the simulation consists of a virtual bin
of a suitable size and depth (depending on the size of the
object) into which virtual instances (Cones in the figure, for
example) are dropped sequentially from random locations
above the bin. Next, an overhead simulator depth camera
captures the depth image associated with the instances. A
snapshot of the instance segmentation of the five objects is
shown in the figure (right). The simulator automatically
takes care of avoiding intersecting objects (because it is
physically impossible) and accounts for occlusions. It takes
approximately 2 seconds to generate one depth image using
this setup with 5 identical object instances.

6.2. Robotic Collection of Real-World Depth Images

We first describe our robotic experiment system, then ex-
plain how we use it to collect more than 3,000 real-world
depth images for testing our approach. Our experiments are
carried out on a Fetch robot [10] equipped with a 7-degree-
of-freedom (7-DOF) arm, and we use ROS [7] as our de-
velopment system. The Fetch robotic arm is equipped with
a stock two-fingered parallel gripper. Mounted above the
box is a downward-pointing Intel RealSense Depth Cam-
era (D435), which consists of depth sensors, RGB sensor,
and infrared projector. The camera, which is attached to a
Noga magnetic base, provides a depth stream output with
resolution up to 1280 × 720 resolution of the scene with
which the Fetch robot interacts. For trajectory planning, we
use the Expansive Space Tree (EST) planner [6]. Note that
during the experiments, human involvement is limited to
switching on the robot, configuring the planner, and placing
the objects in the box arbitrarily. Apart from this initializa-
tion, our robotic pipeline has no human involvement in the
process of data collection.

The data collection setup is depicted in Fig. 4. The
workspace is first set up with a box with plain background,
and the box is fitted with a handle that is grasped by the
Fetch robotic arm. Four identical wooden blocks are placed
inside the box in random pose configurations. A single
instance of a trial proceeds as follows: A depth image of
the box is captured by the depth camera and recorded to a
disk. The robot then initiates the trajectory planner, and the
robotic arm executes a motion trajectory to tilt-shake the
box randomly in the clockwise or anticlockwise direction
such that the motion is collision free, then returns the box
to its original location. The degree of tilt shake is also ran-
domized (up to a specified maximum to prevent the blocks
falling out of box). Multiple trials are executed in succes-

1https://developer.nvidia.com/physx-sdk

Figure 4. Robotic data collection system used to acquire real-world
depth images.

sion for the robot to autonomously record the dataset, with
four cycles per minute.

7. Network Architectures

In this section, we will detail the neural architectures of
the three modules in InSeGAN: (i) the Encoder, (ii) the Dis-
criminator, and (iii) the Generator.
Generator: In Fig. 6, we provide the detailed architec-
ture of our InSeGAN Generator. It has five submodules:
(i) A pose decoder, which takes n random noise vectors
zi ∈ R128 ∼ N(0, I128), where n = 5 in our setup, and
produces 6-D vectors that are assumed to be axis-angle rep-
resentations of rotations and translations [12] (three dimen-
sions for rotation and three for translation). Each 6-D vec-
tor is then transformed into a rotation matrix and a transla-
tion vectors, to produce an element in the special Euclidean
group

(
SE(3)

)
. (ii) A 3D implicit template generation mod-

ule, which takes a 4×4×4×64 dimensional tensor (repre-
senting an implicit 3D template of the object) as input, then
up-samples in 3D using ResNet blocks and 3D instance nor-
malization layers to produce a 16 × 16 × 16 × 16 feature
maps. (iii) A spatial transformer network (STN) [2], which
takes as input the 3D implicit template and the geometric
transform for every instance, then transforms the template,
resamples it, and produces a transformed feature map of the
same size as its input. (iv) A single-instance feature gener-
ator module, which reshapes the transformed template fea-

https://developer.nvidia.com/physx-sdk


Figure 5. An illustration of the physics simulator that we use to
render our synthetic dataset, Insta-10. Left: the simulated bin
into which the identical objects (e.g., Cone) are dropped. Right:
The ground-truth instance segmentation masks for each of the
instances. We use the depth images associated with these in-
stances for training InSeGAN, so that at inference time, segmenta-
tion masks are recovered. The ground-truth instance segmentation
masks are not used for training—they are only used for testing our
unsupervised method.

ture and produces single-instance 2D feature maps (each of
size 16× 16× 128). (v) A depth renderer module that takes
an average pool over the n feature maps representing the n
instances, and renders a multiple-instance depth image from
the pooled feature map.

The 3D implicit template loosely follows the architec-
ture of a HoloGAN [5], but differs in that we do not use
any stochastic modules (via MLP) that were critical in their
framework to produce stochastic components in the gener-
ated images (RGB images, in their case). We found that us-
ing noise vectors as in HoloGAN failed in our setup, caus-
ing us to lose the ability to disentangle instances.
Encoder and Discriminator: In Fig. 7, we show the neural
network used in our Encoder and our Discriminator. They
loosely follow similar architectures, except that the Dis-
criminator takes a 64 × 64 depth image (either generated
or from the real examples) as input and produces a scalar
score, while the encoder takes a generated depth image and
produces the n pose instance vectors as output. We use 128-
D noise vectors when generating the images, and thus the
Encoder is expected to produce 128-D features as output
(one 128-D feature for each instance). Both the Discrim-
inator and the Encoder use 2D convolutions, leaky ReLU
activations, and 2D instance normalization [8] modules.

7.1. Implementation Details and Training Setup

Our InSeGAN modules are implemented in PyTorch. As
alluded to above, we generate 224 × 224 depth images us-
ing our simulator; however, we use 64 × 64 images in our
InSeGAN pipeline. To this end, each 224 × 224 image is
rescaled to 64× 64 and normalized using mean subtraction
and normalization by the variance. For training, we use hor-
izontal and vertical image flips for data augmentations. We

do not use any other augmentation scheme.

7.2. Evaluation Details

For our evaluations, we use the mean IoU (mIoU) metric
between the ground truth instance segments and the pre-
dicted segmentations. Specifically, for each ground truth
segment, we find the predicted segment that is most over-
lapping with this segment, and compute their intersection-
over-union (IoU); we then use every segment’s IoU to com-
pute the mean IoU over all segments.
Training: We train our modules for 1000 epochs using a
single GPU; each epoch takes approximately 30 seconds
on the ∼10,000 training samples for each object. We use
the Adam optimizer, with a learning rate of 2 × 10−4, and
β1 = 0.5. We use 128-D noise samples from a Normal
distribution for the noise vectors, and a batch size of 128
samples.

8. Additional Ablative Studies

In this section, we extend the ablative studies presented
in the main paper with additional results, and analyze and
substantiate the importance of each choice in InSeGAN.

Is 3D Generator Important? An important choice that we
made in InSeGAN is the use of a 3D generator instead of a
2D generator. For comparison, we use a standard 2D image-
based generator typically used in conditional GANs [4].
Specifically, for the 2D generator, we replace the 3D mod-
ules in InSeGAN (i.e., the 3D implicit template, the pose
encoder, and the STN) by 2D convolutions and upsampling
layers, similar to those used in the encoder and the dis-
criminator. We perform two experiments to analyze and
substantiate our choice: (i) to evaluate the training stabil-
ity and convergence, and (ii) to evaluate the performance of
instance segmentation on the various objects. In Figs. 8, we
plot the convergence of the 2D and 3D GANs on three ob-
jects from our Insta-10 dataset, namely Obj01, Cone, and
Connector. We make three observations from these results:
(i) 3D GAN is significantly faster than 2D GAN in conver-
gence, (ii) 3D GAN is more stable, and (iii) 3D GAN leads
to better mIoU for instance segmentation. In Table 1 of
the main paper, we provide comparisons of the 3D and 2D
GANs on all the objects in the Insta-10 dataset. Our results
show that our 3D generator is significantly better than a 2D
generator on a majority of the data classes.
Do We Need All Training Samples? In Fig. 9(a), we plot
the performance against increasing the number of data sam-
ples. That is, we use a random subset of the 10K depth
images and evaluate it on our test set. We used subsets
with 500, 1000, 3000, 7000, and the full 9800 samples. In
Fig. 9(a), we plot this performance. As is clear more train-
ing data is useful, although this increment appears to be de-
pendent on the object class. In Fig. 11, we show qualita-
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Figure 6. Detailed architecture of InSeGAN generator.
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Figure 7. (a) depicts detailed architecture of our Encoder module,
and (b) shows our Discriminator module.

tive results of instance segmentations obtained for different
training set sizes to gain insights into what the performances
reported in Fig. 9(a) can be interpreted as. The results show
that beyond about 3000 samples, our method seems to start
producing qualitatively reasonable instance segmentations,
albeit with more data mIoU performance improves.

Number of Instances/Disentanglement? A key question
about our framework is whether the algorithm really needs
to know the exact number of instances in order to do well
at inference, if the model is trained for a fixed number of
instances? What happens if we only have a rough esti-
mate? In this section, we empirically answer this question.
In Fig. 9(b), we plot the performance against increasing the
number of instances used in InSeGAN; i.e., we increase n
from 1 to 7 for the number of noise vectors we sample for
the generator. Recall that all our ground-truth depth images
consist of 5 instances. The plots in Fig. 9(b) for two objects
(Bolt and Obj01) shows that InSeGAN performs reasonably
well when the number of instances is close to the ground-

truth number. In Fig. 12, we plot qualitative results from
these choices. Interestingly, we find that using n = 1 com-
pletely fails to capturing the shapes of the objects, while
n = 4 learns a two-sided bolt, and n = 5 seems to cap-
ture the shape perfectly. While n > 5 seems to show some
improvements, it is not consistent across the data classes.
Overall, it looks like a rough estimate of the number of in-
stances is sufficient to achieve reasonable instance segmen-
tation performance.
Effect of Noise in the Depth Images? In Table 2, we added
Gaussian noise N(0, σ) to each pixel in the synthetic depth
images input to the algorithm for σ = 0.1, 0.2, 0.5, and
pixels depth values in the range [−1, 1]. We find that In-
SeGAN’s performance on noisy depth images is still much
better than the performance of K-Means on the noise-free
images.

σ KMeans No noise 0.1 0.2 0.5
Bolt 0.18 0.424 0.352 0.326 0.318
obj01 0.2 0.686 0.662 0.643 0.421

Table 2. mIOU for for different noise levels in the depth images.

8.1. Qualitative Comparisons

In Fig. 13, we compare qualitative results from In-
SeGAN with those from other methods. For spectral clus-
tering, we used an automatic bandwidth selection scheme
in the nearest neighbor kernel construction. For Wu et
al. [11], we use their 1-channel variant, as the 2-channel
variant turned out to be very expensive – it is 32x slower
than 1-channel. That said, we did explore the performance
of 2-channels on our Bolt class, but did not see any signif-
icant performance differences to using 1-channel. We also
show comparisons to another recent state of the art method,
IODINE [1]. For all of the prior works, we used code pro-
vided by the respective authors, and only changed the file
path to our dataset. They were trained until convergence
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Figure 8. Convergence plots for three objects comparing InSeGAN with 3D modules (i.e., using pose encoder, 3D instance template,
and STN), shown in orange, with a version in which the 3D modules are replaced by a 2D GAN (i.e., replacing the 3D modules by 2D
convolutions and upsampling layers, similar to the encoder and discriminator in reverse). In the figures, we plot mIoU versus the number
of training epochs. As is clear, using a 3D GAN leads to better performance and more stable convergence. Note that in the Cone (middle
plot), the 2D generator is unstable and often diverges—we reset the optimizer when this happens. This is captured by the discontinuities in
the blue plot. In contrast, using the 3D generator leads to very stable training of the generator and discriminator.
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Figure 9. (a) IoU vs. increasing dataset size. (b) IoU vs. increasing
number of instances used in InSeGAN (n), where the ground-truth
number of instances used to generate the data was always n = 5.
Results are shown for two object categories from Insta-10: bolt
(blue) and Obj01 (orange).

Figure 10. Results using Slot Attention [3].

(that is, until no change in the objective was found). As
is clear from Fig. 13, InSeGAN produces more reasonable
segmentations than other methods. We found that IODINE
completely fails on our dataset. In contrast, InSeGAN, via
modeling the 3D shape of the objects, leads to significant
benefits in challenging segmentation settings. In Fig. 10,
we show qualitative results using the recent Slot Attention
method [3] for the cone class with 5 and 10 instances.

8.2. Qualitative Results

In Figure. 14, we show several more qualitative results
for each of the 10 object classes in Insta-10.
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Figure 14. Qualitative results using InSeGAN on the 10 object classes in Insta-10. We show 10 segmentation results for each class. First
row: input depth image; second row: hallucinated (reconstructed) depth image by InSeGAN; third row: inferred instance segmentation;
fourth row onwards: the single instances hallucinated by InSeGAN.


