
Supplementary Material

A. Overview

This document provides additional information that we
did not fully cover in the main paper, VolumeFusion: Deep
Depth Fusion for 3D Scene Reconstruction. All references
are consistent with the main paper.

B. Evaluation Metrics

In this section, we describe the metrics for depth and 3D
reconstruction evaluation. Depth evaluation involves four
different metrics: Abs Rel, Abs Diff, Sq Rel, and RMSE.
Each of these metrics is calculated as:

Abs Rel =
1

n

∑
(u,v)

∣∣z(u,v) − z̃(u,v)
∣∣
1
/z̃(u,v), (8a)

Abs Diff =
1

n

∑
(u,v)

∣∣z(u,v) − z̃(u,v)
∣∣
1
, (8b)

Sq Rel =
1

n

∑
(u,v)

∣∣z(u,v) − z̃(u,v)
∣∣2 /z̃(u,v), (8c)

RMSE =

√√√√ 1

n

∑
(u,v)

∣∣z(u,v) − z̃(u,v)
∣∣2, (8d)

where n is the number of pixels within both valid ground-
truth and predictions, z(u,v) is the depth value at the pixel
(u, v) in the ground-truth depth map z, z̃(u,v) is the depth
value at the pixel (u, v) in the inferred depth map z̃, and | · |1
represents absolute distance. Note that the inferred depth
map of our method is the final fused depth results after the
scene reconstruction.

Regarding the 3D geometry evaluation, we propose
four different metrics: L1, accuracy (Acc), complete-
ness (Comp), and F-score. L1 is the absolute difference
between the ground-truth TSDF and the inferred TSDF, the
accuracy is the distance from predicted points to the ground-
truth points, completeness is the distance from the ground-
truth points to the predicted points, and F-score is the har-
monic mean of the precision and recall. Each of these met-
rics is calculated as:

L1 = meana<1 |a− ã|1 (9a)
Acc = meanp̃∈P̃(minp∈P |p − p̃|1) (9b)

Comp = meanp∈P(minp̃∈P̃ |p − p̃|1) (9c)

F-score =
2× Prec × Recall

Prec + Recall
(9d)

where ã is the predicted TSDF value, a is the ground-

truth TSDF value, p is a point within a set of the ground-
truth point clouds P , p̃ is a point within a set of pre-
dicted point clouds P̃ , Prec is the precision metric (i.e.,
Prec=meanp̃∈P̃(minp∈P |p-p̃|1 <0.05)), and Recall is the
recall metric (i.e., Recall=meanp∈P(minp̃∈P̃ |p-p̃|1 <0.05))

C. Implementation and Training Scheme
In this section, we provide clarifications and precision

about the implementation and training scheme of our vol-
ume fusion network. The size of the n-th initial feature
volume VI

n is R96(3C)×48(D)×120(H)×160(W). Note that the
size of the volumes in the first stage is consistent dur-
ing the training and testing session, however, we set dif-
ferent resolutions of the feature volume VF

n , the pose-
invariant scene volume VR

n , the unified scene volumeVU ,
and the TSDF scene volume ṼTSDF. The sizes of both
the feature volume VF

n and the pose-invariant scene vol-
ume VR

n are R32(C)×160(Vx)×160(Vy)×48(Vz) for training and
R32(C)×640(Vx)×640(Vy)×128(Vz) for testing and evaluation.

As depicted in Fig. 2 of the manuscript, the unified
scene volume VU obeys R33(C+1)×160(Vx)×160(Vy)×48(Vz)

for a training session and R33(C+1)×640(Vx)×640(Vy)×128(Vz)

for a testing period. Note that the unified scene volume
has one more channel than the pose-invariant scene vol-
ume VR

n . This is because we embed back-projected point
clouds from masked depth maps Ẑ . After we propagate VU

for depth fusion, the dimensions of the TSDF scene volume
ṼTSDF are R160(Vx)×160(Vy)×48(Vz) for a training period and
R640(Vx)×640(Vy)×128(Vz) for a testing session. Note that we
set the identical resolution of the final TSDF scene volume
as proposed in Murez et al. [32] for a fair comparison. The
size of the batch per GPU is set as 1. For training, each
batch consists of 45 multi-view images (i.e., 15 reference
views and 30 neighbor views). We use all images for test.

D. Discrete Kernel Rotation
This section describes the details of PosedConv. The

idea of the PosedConv is to rotate the reservoir kernel by
using the known camera poses to extract rotation-invariant
features (Sec. 3.3 of the manuscript).

The rotated kernel can be simply computed by rota-
tion followed by linear interpolation, called Rotation-by-
Interpolation, as shown in Fig. 7-(a). However, the naively
rotated kernels ŴR

n often fail to interpolate properly rotated
reservoir kernel values because of the different radius from
the center to the boundary. Thus, we design a discrete kernel
rotation performed on a unit sphere to minimize the loss of
boundary kernel information as shown in Fig. 7-(b), called
Discrete Kernel Rotation.

In detail, we first transform the 3D cube into a unit
sphere by normalizing its distance from the center of the
kernel. Within this unit sphere, the rotated sphere also be-

Rotation

(𝐑1→𝑛)

(b) Discrete Kernel Rotation (PosedConv)

(a) Rotation-by-Interpolation

De-normalize

Linear interpolation

Reservoir kernel (𝐖)
[𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, w, w,w]

Rotated kernel (𝐖n
𝐑)

[𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, w,w,w]

[𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, w, w,w]
Naively rotated kernel (෡𝐖n

𝐑)
(i.e., Rot interp)

Figure 7. Discrete Kernel Rotation in our PosedConv. From the reservoir kernel W, (a) Rotation-by-Interpolation produces naively
posed kernel ŴR

n , (b) discrete kernel rotation (ours) produces the rotated kernel WR
n .

Algorithm 1 Discrete Kernel Rotation
Require: Reservoir kernel W ∈ RCout×Cin×w×w×w , rotation matrix

Rn→1.
1: procedure DISCRETE KERNEL ROTATION(W, Rn→1)
2: Declare rotated kernel WR

n ∈ RCout×Cin×w×w×w

3: for [i, j, k] in WR
n do

4: [Xs, Ys, Zs]← NORM([i, j, k], w) ▷ NORM(·) in Alg. 2
5: [X̂s, Ŷs, Ẑs, 1]⊺←Rn→1[Xs, Ys, Zs, 1]⊺

6: [̂i, ĵ, k̂]← DeNorm([i, j, k], w, [X̂s, Ŷs, Ẑs]) ▷ DENORM(·)
in Alg. 3

7: WR
n (i, j, k)← Bilinear(W, [̂i, ĵ, k̂])

8: end for
9: end procedure

Algorithm 2 Normalization Function for Discrete Kernel
Rotation
Require: Voxel coordinate [i, j, k], kernel size w.
Ensure: Normalized image coordinate [Xs, Ys, Zs].
1: procedure NORM([i, j, k], w)
2: r← w-1

2
▷ Kernel radius r

3: ℓ←
√

((i-r)2 + (j-r)2 + (k-r)2)
4: [Xs, Ys, Zs]← [i-r

ℓ
, j-r

ℓ
, k-r

ℓ
] where 0 ≤ Xs, Ys, Zs ≤ 1.0

return [Xs, Ys, Zs]
5: end procedure

comes a unit sphere so that we can alleviate the information
drops during the rotation. After rotating the unit sphere, we
denormalize the radius of the sphere to form the 3D cube.

This process rotates the reservoir kernel W of the n-th
camera view by using the rotation matrix R1→n, as depicted
in Fig. 7 of the main paper. Concretely, we iteratively ap-
ply the discrete kernel rotation for each n-th feature volume
VF

n , as in Fig. 2 of the main paper. Given the reservoir ker-
nel W and the rotation matrix R1→n, the algorithm infers
the rotated kernel WR

n as in Alg. 1. To densely fill the ro-
tated kernel WR

n with the reservoir kernel W, we need to
repetitively apply the reverse warping process.

Algorithm 3 DeNormalization Function for Discrete Ker-
nel Rotation
Require: Voxel coordinate [i, j, k] ∈ WR

n , kernel size w, normalized
image coordinate [X̂s, Ŷs, Ẑs] where 0.0 ≤ X̂s, Ŷs, Ẑs ≤ 1.0.

Ensure: Rotated voxel coordinate [̂i, ĵ, k̂] ∈W.
1: procedure DENORM([i, j, k], w, [X̂s, Ŷs, Ẑs])
2: r← w-1

2
▷ Kernel radius r

3: ℓ←
√

(i-r)2+(j-r)2+(k-r)2

4: [̂i, ĵ, k̂]← [ℓ·X̂s+r, ℓ·Ŷs+r, ℓ·Ẑs+r] where 0 ≤ i, j, k ≤ w

return [̂i, ĵ, k̂]
5: end procedure

Each voxel v′ at the voxel coordinate [i, j, k], is trans-
formed into its position on the unit sphere [Xs, Ys, Zs, 1]

⊺

through the NORM(·) function (Line 4 in Alg. 1). The de-
tails of the NORM(·) function is described in Alg. 2 and
this is the fundamental difference between our Discrete Ker-
nel Rotation (Fig. 7-(b) of the main paper and Alg. 1) and
rotation-by-interpolation (Fig. 7-(a) of the main paper and
Alg. 4). Since this is a reverse warping process, we use the
given rotation matrix Rn→1 (Line 5 in Alg. 1) that is the
inverse of the rotation matrix R1→n as depicted in Fig. 7
of the main paper. To do so, we obtain the rotated location
[X̂s, Ŷs, Ẑs, 1]

⊺ lying on the unit sphere (Line 5 in Alg. 1).
To find the corresponding location in the reservoir ker-

nel, we denormalize the rotated location [X̂s, Ŷs, Ẑs, 1]
⊺ and

obtain the rotated voxel coordinate [̂i, ĵ, k̂] at the reservoir
kernel W (Line 6 in Alg. 1) where DeNorm(·) function is
precisely described in Alg. 3. Since the rotated voxel co-
ordinate is not located outside of the boundary of the reser-
voir kernel W, we directly apply bilinear interpolation to
extract the kernel response at [̂i, ĵ, k̂] at the reservoir kernel
W (Line 7 in Alg. 1). Contrary to our discrete kernel ro-
tation, naive rotation-by-interpolation must check whether
the rotated voxel coordinate [̂i, ĵ, k̂] is out of the boundary

(c) Predicted

overlapping mask ෩𝑀𝑛

(d) Ground truth

overlapping mask 𝑀𝑛
(b) Reference view .n(a) A set of 2 neighbor views { , }n-1 n+1

Figure 8. Illustration of an overlapping mask. Given (a) 2 neighbor views and (b) a reference frame, our multi-view stereo network
(Fig. 2 of the manuscript) infers a depth map Z̃ and (c) a overlapping mask M̃. A true overlapping mask M is a binary mask that 1
represents valid overlapping pixels (yellow pixels in (d)) and 0 means non-overlapping pixels (cyan pixels in (d)). We can determine the
overlapping pixels as pixels transformed from neighbor images (a) to the referential image (b) using true ground truth depth maps Z and
ground truth camera poses [R|t]. Since there are unknown true depth values within the ground truth depth maps Z , we cannot determine
the overlapping or non-overlapping pixels that are colorized as purple in (d). After training our network, the obtained overlapping mask
M̃n is visualized in (c) where yellow pixels indicate predicted overlapping pixels and purple pixels mean estimated non-overlapping pixels.

Method Evaluation
AbsRel RMSE L1 F-score

3D Conv .058 .231 .166 .460
Rot interp .056 .223 .159 .487
Disc K Rot .049 .164 .141 .508

Table 5. Ablation study of PosedConv. We compare orig-
inal convolution layer (i.e., 3D Conv), and the Rotation-by-
Interpolation (i.e., Rot interp), and our PosedConv (i.e., Disc K
Rot). It shows that the kernel rotation is much effective thank the
original 3D Conv, but our PosedConv further improve the quality
of the 3D scene reconstruction.

Algorithm 4 Rotation-by-Interpolation
Require: Reservoir kernel W ∈ RCout×Cin×w×w×w , rotation matrix

Rn→1.
1: procedure ROTATION-BY-INTERPOLATION(W, Rn→1)
2: Declare rotated kernel WR

n ∈RCout×Cin×w×w×w

3: for [i, j, k] in WR
n do

4: r← w-1
2

▷ Kernel radius r
5: [X,Y, Z]← [i-r, j-r, k-r] ▷ Signed distance
6: [X̂, Ŷ , Ẑ, 1]⊺←Rn→1[X,Y, Z, 1]⊺

7: [̂i, ĵ, k̂]← [X̂+r, Ŷ +r, Ẑ+r])
8: if [̂i, ĵ, k̂] /∈W then ▷ Boundary check
9: [̂i, ĵ, k̂]← [̃i, j̃, k̃]

10: where [̃i, j̃, k̃]∈W and [̂i, ĵ, k̂] is nearest to [̃i, j̃, k̃].
11: end if
12: WR

n (i, j, k)← Bilinear(W, [̂i, ĵ, k̂])
13: end for
14: end procedure

of the reservoir kernel W, or it sometimes has difficulty in
interpolating the reservoir kernel W into the rotated kernel
WR

n (Lines 8-10 in Alg. 4).
Finally, we compute the rotated kernel WR

n for the n-th
camera view. As described in Sec. 3.3 of the main paper, we
identically apply the conventional 3D convolution operation
that is equipped with our rotated kernels WR

n .

To validate the necessity of our discrete kernel rotation,
we conduct an ablation study as in Table 5. Alongside the
results in Table 2 of the manuscript, we additionally report
the accuracy when we use naive Rotation-by-Interpolation
(i.e., Rot interp). It shows that the rotating the kernel in
both ways (Rot interp and discrete kernel rotation) improves
the quality of depth and 3D geometry, but our PosedConv
further achieves the higher accuracy than that of Rotation-
by-Interpolation.

E. Overlapping Mask

In this section, we present an example figure of an over-
lapping mask as in Fig. 8. In the first stage of our network,
multi-view stereo, we utilize three neighbor views to infer a
depth map and an overlapping mask. This overlapping mask
is used to filter out the uncertain depth values at the specific
pixels that have no corresponding pixels in the neighbor
views. As shown in Fig. 8, our network properly infers the
overlapping mask in a referential camera viewpoint. Note
that the referential image is in between two adjacent views,
the overlapping region is usually located at the center of the
referential images.

F. Combined Ablation Results.

To clearly show influences from our contributions, we
merge ablation results in the manuscripts as in Table 6. The
quality of the reconstruction is largely improved with both
PosedConv and overlapping masks, simultaneously. This
is because overlapping masks are designed to filter out the
uncertain depth values that can hurt the quality of 3D recon-
struction done by PosedConv. In conclusion, our two novel
contributions, PosedConv and overlapping masks, are com-
plementary and lead to precise 3D scene reconstruction.

Preserve (✓) Performance
Depth Conv type Overlap 2D depth 3D geometry
fusion Conv PosedConv AbsRel RMSE L1 F-score

.061 .248 .162 .499
✓ .060 .245 .160 .495

✓ ✓ .060 .238 .162 .475
✓ ✓ ✓ .058 .231 .166 .460
✓ ✓ ✓ .049 .164 .141 .508

Table 6. Merged ablation results on ScanNet dataset.

Method 2D Depth 3D Geometry
AbsRel RMSE Acc F-score

CNMNet (ECCV’20) .161 .361 .398 .149
NeuralRecon (CVPR’21) .155 .347 .100 .228
VolumeFusion (ours) .140 .320 .085 .217

Table 7. Quantitative results on 7-Scenes dataset.

G. Additional Results
We conduct quantitative evaluations on the 7-Scenes

dataset (Shotton et al., CVPR’13) in Table 7. Similarly,
our network achieves state-of-the-art performance against
the recent approaches. For a fair comparison, we strictly
follow the assessment pipelines of these concurrent ap-
proaches ([38] and Long et al. in ECCV’20).

