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A. Parameter Sensitivity
A.1. Accuracy as a function of K

In the main paper, we presented experiments using
K=4 as the number of components in the mixture model.
In Tab. 1 we analyze the sensitivity of our results with re-
spect to the number of components in the GMM. Specif-
ically, we provide numbers for K=1, 2, 4, and 8. As in
the main paper, we repeat the experiment three times and
provide the average mAP and standard deviation for the
normal (IoU>0.5) and the strict metric (IoU>0.75). We
also provide the number of parameters and the forward time
for each of these instantiations. As shown, the accuracy
of K=1 is much lower than that of K=4, especially for
IoU>0.75. Moreover, for K=1, epistemic uncertainty can-
not be estimated (see Eq.1 in the main paper). The accuracy
remains stable for other configurations with minor varia-
tions in mAP. However, as the number of parameters is pro-
portional to K, there are significant variations in terms of
the number of parameters and forward time. Given these
results, we selected K=4 as a good trade-off between ac-
curacy (normal and strict metric) and computing cost. In
practice, the larger K, the more difficult to train the GMM
due to fluctuation. This would be the reason for a drop in
accuracy when K=8.

#of r{l{ixture IoU>OzAP (?O)U>0A75 # of parameters (M) | Forward time (sec)
1 69.894+0.23 45.18+0.24 29.6 0.021
2 70.29+0.29  45.98+0.38 37.6 0.025
4 70.194+0.36  46.11+0.38 523 0.031
8 70.01£0.29  45.69+0.28 81.8 0.051

Table 1: VOC07: mAP and computing cost as a function of
the number of components in the mixture model. Model pa-
rameters in millions (M) and forward time in seconds (sec).

A.2. Accuracy as a function of input image resolu-
tion

In order to check for the robustness of our method with
respect to the image size, here we compare the perfor-
mance of the network trained using higher resolution im-

ages (512x512). The experiment is analogous to the ex-
periment we showed in Tab.1a in the main paper. We com-
pare the results of SSD [3], with the results of our method.
As we can see in Tab. 2, as expected, increasing the reso-
lution of the input image yields a significant improvement
in mAP score for all the methods. For high-resolution in-
put images, our method outperforms SSD in the normal
metric (IoU>0.5) by 0.51 percent points (pp), and shows
significant improvement when evaluated in the strict metric
(IoU>0.75), with an improvement of 2.49 pp. That is, our
method is notably better in those scenarios where we need a
higher intersection between the predicted bounding box and
the ground truth.

Method SSD 512 (512x512) SSD 300 (300x300)
ToU>0.5 IoU>0.75 ToU>0.5 ToU>0.75
SSD [3] | 73.224+0.35 45.74+£0.70 | 69.294+0.51 43.36+1.24
Oursgmm | 73.50£0.12  48.23+0.53 | 70.19£0.36  46.114+0.38
Oursepy | 73.73£0.16  48.1240.33 | 70.454+0.06 46.18+0.26

Table 2: VOCO07: mAP (in %) as a function of the resolu-
tion of the input image.

A.3. Accuracy as a function of budget number in
active learning

In the main paper, we used a budget of 1k following the
setup of [6] to enable direct comparison on VOC07+12. In
order to check for the mAP with respect to a budget number
in active learning, we further compare the mAP for cases
of 9k, 3k, and 1k as the budget number. We summarize the
results of this experiment in Tab. 3. As in the main paper,
we report the performance using the average of mAP and
standard deviation for three independent trials. As shown
in the last active learning iteration, as expected, we can see
that the smaller the budget number yields a higher accuracy
improvement in active learning.

B. More visual examples selected by our ap-
proach

Fig. 1 shows more representative examples selected by
our active learning approach. Each uncertainty value (bold
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Figure 1: Examples of aleatoric and epistemic uncertainties for inaccurate detections. Best viewed in screen.

Budget number

# of images ok 3K Ik

1k 0.5254+0.0017 | 0.5254+0.0017 | 0.525440.0017
2k - - 0.6130+0.0040
3k - - 0.6556+0.0051
4k - 0.6797+0.0011 | 0.6843+0.0043
Sk - 0.7077+0.0019
6k - - 0.7252+0.0027
Tk - 0.7335+0.0049 | 0.7352+0.0025
8k - 0.7453+0.0025
9k - - 0.7509+0.0014
10k 0.7493+0.0043 | 0.7550+0.0012 | 0.7598+0.0021

Table 3: VOCO07+12: mAP as a function of the budget num-
ber in active learning.

numbers in Fig. 1) provides a different insight into some
particular failure. From left to right and top to bottom: One
of the several bounding boxes detected as person is false
positive; One of the several bounding boxes detected as cow
is false positive; A horse is misclassified as a bird; A motor-
bike is misclassified as bicycle; One of the several bounding
boxes detected as person is false positive; One of the several
bounding boxes detected as horse is false positive; A bottle
is misclassified as a TV/monitor; A bird is misclassified as
an aeroplane; One of the several bounding boxes detected as
person is false positive; One of the several bounding boxes

detected as person is false positive; A person is misclassi-
fied as a chair; A toy (not in the PASCAL VOC dataset) is
misclassified as a person.

C. Values in the plots of VOC07+12

In the main paper, we present plots for active learning re-
sults using VOCO07+12 in Fig. 4 and Fig. 5. Tab. 4, Tab. 5,
and Tab. 6 summarize the actual numbers used to create the
plots. As mentioned in the paper, in Tab. 4, numbers cor-
responding to Random [3] , Entropy [4], Core-set [5], and
LLAL [6] are taken from [6]. For MC-dropout [1], to fur-
ther verify the influence in the number of forward passes,
we include two instances: using 25 (the one included in the
main paper) and 50 forward passes. As we can see in Tab. 5,
the variation in accuracy for these two approaches is negli-
gible while the compute needed is significantly larger for
the one using 50 forward passes.

D. Discussion of the classification loss

In addition to Eq. 5 and Eq. 9 in the main paper (called
Type-1 loss), we can train the proposed object detection net-



# of labeled images Random [3] Entropy [4] Core-set [5] LLAL [6] Oursgmm Oursesy
1k 0.5262+0.0062  0.52624+0.0062  0.5262+0.0062  0.5238+0.0028 | 0.5254+0.0017 0.525440.0017
2k 0.6082+0.0019  0.6123+0.0081 0.6236+0.0052  0.6095+0.0042 | 0.6130+0.0040 0.612140.0050
3k 0.6423+0.0022  0.635740.0091  0.6590+0.0043  0.649140.0047 | 0.6556+0.0051 0.6657+0.0027
4k 0.6633+0.0018  0.6694+0.0021 0.6763+0.0021  0.6690-+0.0028 | 0.6843+0.0043 0.6849+0.0014
5k 0.67514+0.0017 0.6870+£0.0015 0.6888+0.0048 0.6905+0.0045 | 0.7077+0.0019 0.707340.0012
6k 0.686040.0050 0.6982+0.0011 0.6944+0.0032 0.70354+0.0055 | 0.72524+0.0027 0.718540.0016
Tk 0.692740.0016  0.7018+0.0027 0.70164+0.0013  0.7149+0.0066 | 0.7352+0.0025 0.731840.0045
8k 0.70104+0.0017 0.7112+0.0012  0.708340.0012  0.7213+0.0060 | 0.7453+0.0025 0.742940.0044
9k 0.704440.0047 0.7166+0.0031 0.71154+0.0016  0.7273+0.0030 | 0.7509+0.0014 0.7483+0.0028
10k 0.71174+0.0016  0.7222+0.0024 0.717140.0025 0.7338+0.0028 | 0.7598+0.0021 0.7584+0.0026
Table 4: VOC07+12: Comparison to published work using a single model for scoring.
# of labeled images | MC-dropout [1] (50 fwd) MC-dropout [1] (25 fwd) Ensemble [2] Oursgmm Oursesy

1k 0.5235 4+ 0.0004 0.5235+0.0004 0.5254+0.0017 | 0.525440.0017 0.52544+0.0017

2k 0.6059 + 0.0026 0.6059+0.0028 0.6020+0.0093 | 0.613040.0040 0.612140.0050

3k 0.6660 + 0.0023 0.6690+0.0030 0.6570+£0.0099 | 0.655640.0051 0.6657+0.0027

4k 0.6890 4+ 0.0018 0.6840+0.0019 0.6920+0.0034 | 0.684340.0043 0.6849+0.0014

S5k 0.7060 £ 0.0045 0.7080+0.0041 0.7150+0.0018 | 0.707740.0019 0.7073+0.0012

6k 0.7200 £+ 0.0012 0.7190+£0.0050 0.7290+0.0027 | 0.72524+0.0027 0.7185+0.0016

Tk 0.7367 + 0.0015 0.7381+0.0003 0.7429+0.0004 | 0.73524+0.0025 0.7318+0.0045

8k 0.7468 + 0.0027 0.7475+0.0056 0.7491+£0.0041 | 0.7453+0.0025 0.7429+0.0044

9k 0.7549 + 0.0013 0.7558+0.0023 0.7589+0.0025 | 0.7509+0.0014  0.7483+0.0028

10k 0.7567 + 0.0048 0.7601+£0.0018 0.7590+0.0032 | 0.7598+0.0021 0.7584+0.0026

Table 5: VOCO07+12: Accuracy comparison to MC-dropout and ensemble. For MC-dropout, we include two instances: using

25 forward passes and using 50 forward passes.

SSD [3] Ensemble [2] MC-dropout [1] | Oursgmm Oursesy
# of parameters (M) 26.29 78.87 26.29 52.35 41.12
Forward time (sec) 0.023 0.069 0.412 0.031 0.029

Table 6: VOCO07+12: Model parameters in millions (M) and forward time in seconds (sec) using a resolution of 300 x 300

for the input image and K = 4.

work with the following classification loss:

N K
L5 (y,¢) = — Z Y& log Z WikSoftmax(é;,k)
k=1

i€ Pos

classes. For this reason, in the main paper, we show the
experimental results based on the Type-1I loss, but a study
on a classification loss design that can improve the overall
active learning performance while resolving the weight bias

MxN K @ is needed in the future.
Ne ) ik Atk
Ly (y,c) == > yology w'"Softmax(é,), I
ieN k=1 Model Cls. loss mAP in % (# images)
reey = : Ist (2k) 2nd (3k) 3rd (4k)
) : ; ) , Type-1 | 62.4310.10 67.32£0.12 69.43+0.11

where yg and yg are one-hot vectors having 1 '1n ground OUrs gmm Type2 | 62642021 67204022 69.40+0.14
truth class G and background class 0, respectively. The Ours Type-1 | 62.91£0.16 67.6120.17 69.66£0.17
remaining parameters are the same as Eq. 5 in the main T | Type-2 | 6223025 67.3040.23 69.57+0.16

paper. The parameters of the loss for Ours. ¢ are the same
as Eq. 1 except for the class probability ﬂ;" For Type-
1 loss, the weights tend to be concentrated in one of the
mixture distributions in training. For Eq. 1 (called Type-
2 loss), however, this trend tends to be alleviated. Tab. 7
and Tab. 8 show the results of active learning of two classi-
fication losses on VOCO07 and MS-COCO, respectively. As
shown, there is no significant difference in the accuracy of
the two loss functions on VOCO7, but there is a large dif-
ference on MS-COCO. Although the Type-2 loss mitigates
the weight bias compared to the Type-1 loss, the accuracy
improvement is not sufficient for larger dataset with more

Table 7: Ablation study of classification losses on VOCO7.

mAP in % (# images)

Model Cls. loss 15t (5K) 2nd (6k) 30d (7K)
Ours Type-1 | 27.70+0.08 29.2840.05 30.51+0.12
9mm | Type-2 | 27.38+0.16 28.69+0.22 29.55+0.14
Ours Type-1 | 27.33+0.04 29.06+0.08 30.02+0.05
Seff | Type-2 | 27.4640.13 28.3240.32 29.21+0.14

Table 8: Ablation study of classification losses on MS-
COCO.
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