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In this document, we provide more comprehensive re-
sults not provided in the original manuscript due to the page
limit as below. The code to reproduce our results will be
publicly available soon. Note that all experiments were con-
ducted with the supervised ThresNet.

• Histogram of the learned threshold τ and qualitative
evaluation of depth results computed using different
thresholding methods (Section 1)

• Qualitative evaluation for monocular depth estima-
tion with state-of-the-arts on KITTI and Cityscapes
datasets (Section 2.2 and 2.3)

• Quantitative evaluation for monocular depth estima-
tion on Cityscape dataset without fine-tuning (Section
2.4)

• Quantitative evaluation for monocular depth estima-
tion using improved ground truth depth maps [22] on
KITTI dataset (Section 2.5)

• Performance analysis according to a hyperparameter ε
used in the soft-thresholding function (Section 2.6)

• Quantitative evaluation of the proposed method ac-
cording to the use of DepthNet and RefineNet (Section
2.7)

• Ground truth confidence map and evaluation metric
used in the confidence estimation (Section 3.1 and 3.2)

• Qualitative result for confidence estimation with state-
of-the-arts on KITTI dataset (Section 3.3)

• Evaluation metric used in the uncertainty estimation
(Section 4.1)

• Qualitative result for uncertainty maps on KITTI
dataset (Section 4.2)
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Figure 1. Comparison of confidence thresholding operator: (a)
hard-thresholding used in [1], (b) hard-thresolding function used
in [20], and (c) our soft-thresholding function. The learned thresh-
old is used in (b) and (c), while the threshold is fixed in (a) for all
training images.
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Figure 2. Histogram of the learned threshold τ on three different
thresholding methods: (a) hard-thresholding used in [1], (b) hard-
thresolding function used in [20], and (c) our soft-thresholding
function.
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Figure 3. Examples of gradually improved depth results of (a) in-
put image, from (b) using the monocular depth network with fixed
threshold τ = 0.3 [1], (c) using the monocular depth network with
learned threshold τ [20], and to (d) using the proposed method.

1. Comparison with thresholding methods

This section further highlights the effectiveness of
our thresholding method by analyzing the distribution of
learned threshold τ . Fig. 1 recaps the thresholding oper-
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Figure 4. Qualitative evaluation with existing monocular depth estimation methods on the Eigen split [3] of KITTI dataset: (a) input image,
(b) Kuznietsov et al. [13], (c) Monodepth [5], (d) Monodepth2 [6], (e) DepthHint [24], and (f) Ours (D+R) in the submitted manuscript.
Compared to other results, our method predicts instances very well without holes or distortions while recovering fine object boundaries.
Additionally, our method is capable of predicting thin instances precisely.

ators (Fig. 2 of the paper) for the completeness of sup-
plementary document. To analyze the distribution of the
learned threshold τ , we plotted the histogram of τ values
learned using 20k images of KITTI training dataset [4] in
Fig. 2. For a fair comparison, all experiments were con-
ducted under the same environment, including network ar-
chitecture, loss function, and training data. All results were
obtained without the probabilistic refinement of the Re-
fineNet.

Cho et al. [1] fixed the threshold to 0.3 for all training
images. Tonioni et al. [20] attempted to learn the thresh-
old adaptively for each image by applying the regulariza-
tion loss − log(1− τ), but it simply prevents τ values from
converging to 0 or 1 and does not take into account image
characteristics that enable τ to be learned adaptively. As
shown in Fig. 2 (b), τ values predicted by [20] are concen-
trated around specific values (0.1) with very small variance,

meaning that almost similar threshold τ is used for all train-
ing images. This is the reason why the performance gain of
Tonioni et al. [20] over Cho et al. [1] is relatively marginal,
as reported in Tab. 4 of the original manuscript. Contrarily,
our method learns image-adaptive τ values as plotted in Fig.
2 (c). Fig. 3 of the original manuscript also reports that the
proposed method learned the threshold τ accordingly. The
threshold τ was set low in the images where depth inference
is easy, while being set high in the opposite case including
saturation, low-light, and textureless region.

Fig. 3 shows the examples of gradually improved depth
results according to different thresholding methods. The
proposed method yields qualitatively better results, where
complete instances are recovered and fine object boundaries
are well preserved, than other hard thresholding methods.
Also, in Tab. 4 of the original manuscript, it can be seen that
the proposed method outperforms the two methods quanti-
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Figure 5. Qualitative evaluation for depth estimation with existing methods on Cityscapes validation dataset: (a) input image, (b) [5], (c)
[21], (d) [24] and (e) Ours (D+R) of the original manuscript. Similar to KITTI results, our method is remarkable at predicting fine details
with no distortions at all instances and recovering thin objects that appear frequently in the Cityscapes dataset, whereas other methods often
fail to predict accurate depth values at these regions.

tatively.

2. Monocular depth estimation results
This section provides more results for comparative study

with state-of-the-art methods in terms of monocular depth
accuracy.

2.1. Evaluation metrics

In order to evaluate the depth estimation performance,
same as the original manuscript, five commonly-used eval-
uation metrics proposed in [3] were adopted as follows:

• Abs Rel = 1
|Ω|

∑
p∈Ω
|dp−dgtp |
dgtp

• Sq Rel = 1
|Ω|

∑
p∈Ω

(dp−dgtp )2

dgtp

• RMSE =
√

1
|Ω|

∑
p∈Ω (dp − dgt

p )2

• RMSE log =
√

1
|Ω|

∑
p∈Ω (log(dp)− log(dgt

p ))2

• δ < 1.25n = % of dp s.t. δ = max(
dp
dgtp
,
dgtp
dp

) < 1.25n

for n = 1, 2, 3,

where dp and dgt
p indicate the estimated depth map and

ground truth depth map at a pixel p, respectively. Ω rep-
resents a set of valid pixels.

2.2. Qualitative evaluation on KITTI

Fig. 4 shows more results on the Eigen Split [3] of KITTI
dataset. We compared our results with (b) Kuznietsov et



Table 1. Quantitative evaluation for depth estimation with existing methods on Cityscapes validation dataset without fine-tuning on
Cityscapes training dataset. Numbers in bold and underlined represent 1st and 2nd ranking, respectively.

Lower is better Accuracy: higher is better

Method Data Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [5] S 0.631 10.257 13.424 0.525 0.281 0.546 0.749
MonoResMatch [21] S 0.241 2.149 9.064 0.296 0.570 0.891 0.966

PackNet-SfM [7] M 0.245 2.240 8.920 0.298 0.557 0.892 0.967
Monodepth2 [6] S 0.242 2.308 8.563 0.290 0.591 0.904 0.971
DepthHint [24] S 0.220 2.008 8.363 0.273 0.613 0.922 0.975

Ours (D) S 0.238 1.983 8.176 0.282 0.629 0.923 0.976
Ours (D+R) S 0.225 1.962 8.010 0.276 0.631 0.924 0.976

Table 2. Quantitative evaluation for monocular depth estimation with existing methods on KITTI Eigen split dataset [3] with improved
ground truth depth maps [22]. Numbers in bold and underlined represent 1st and 2nd ranking, respectively.

Lower is better Accuracy: higher is better

Method Data Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLeaner [25] M 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [15] M 0.134 0.983 5.501 0.203 0.827 0.944 0.981

DDVO [23] M 0.126 0.866 4.932 0.185 0.851 0.958 0.986
EPC++ [14] M 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Monodepth2 [6] S 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Uncertainty (Boot+Log) [17] S 0.085 0.511 3.777 0.137 0.913 0.980 0.994
Uncertainty (Boot+Self) [17] S 0.085 0.510 3.792 0.135 0.914 0.981 0.994
Uncertainty (Snap+Log) [17] S 0.084 0.529 3.833 0.138 0.914 0.980 0.994
Uncertainty (Snap+Self) [17] S 0.086 0.532 3.858 0.138 0.912 0.980 0.994

UnRectDepthNet [12] M 0.081 0.414 3.412 0.117 0.926 0.987 0.996
PackNet-SfM [7] M 0.078 0.420 3.485 0.121 0.931 0.986 0.996

Ours (D) S 0.078 0.361 3.223 0.120 0.930 0.987 0.996
Ours (D+R) S 0.076 0.340 3.171 0.119 0.931 0.987 0.996

al. [13], (c) Monodepth [5], (d) Monodepth2 [6], (e) Depth-
Hint [24], and (f) Ours (D+R). Compared to other results,
our method predicts instances very well without holes or
distortions while recovering fine object boundaries. Addi-
tionally, our method is capable of predicting thin objects
precisely.

2.3. Qualitative evaluation on Cityscapes dataset

Fig. 5 shows more qualitative results on Cityscapes
dataset [2] of Fig. 5 in original manuscript. Note that it
is fine-tuned on Cityscapes dataset. We compared our re-
sults with three existing methods: (b) [5], (c) [21], (d) [24]
and (e) Ours (D+R) in the original manuscript. Similar to
KITTI results, our method is remarkable at predicting fine
details with no distortions at all instances and recovering
thin objects that appear frequently in the Cityscapes dataset,
whereas other methods often fail to predict accurate depth
values at these regions.

2.4. Quantitative evaluation on Cityscapes dataset
without fine-tuning

We also evaluated the performance of the proposed
method on the Cityscapes dataset without fine-tuning. Ta-
ble 1 provides the quantitative evaluation on the Cityscapes
validation dataset [2], setting maximum depth to 80 me-
ters. The performance evaluation includes Monodepth
[5], MonoResMatch [21], Monodepth2 [6], DepthHint
[24], PackNet-SfM [7]. Even without fine-tuning on the
Cityscapes dataset, our method still outperforms state-of-
the-arts approaches, and it shows that our model trained
on KITTI dataset generalizes well on other dataset without
bias.

2.5. Quantitative evaluation on KITTI improved
ground truth depth maps

To strengthen credibility to quantitative evaluation, we
also measured the monocular depth accuracy by using test
frames with the improved ground truth depth maps made
available in [22] for KITTI Eigen split dataset [3]. The im-
proved ground truth maps are high quality depth maps gen-



Table 3. Quantitative depth estimation results according to ε value evaluated on KITTI Eigen Split [3] raw dataset.

ε Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

10 0.099 0.652 4.266 0.187 0.883 0.960 0.981
30 0.102 0.657 4.290 0.189 0.881 0.959 0.980
50 0.100 0.649 4.272 0.188 0.881 0.959 0.979

Table 4. Quantitative depth estimation results for three cases of the proposed method on KITTI Eigen Split [3] raw dataset.

Method Abs Rel Sqr Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Ours (D) 0.099 0.652 4.266 0.187 0.883 0.960 0.981
Ours (R) 0.096 0.646 4.280 0.189 0.882 0.959 0.980

Ours (D+R) 0.096 0.629 4.187 0.185 0.887 0.963 0.983

erated by accumulating LiDAR point clouds from 5 consec-
utive frames. Table 2 shows the quantitative evaluation with
existing methods on the KITTI Eigen split dataset using the
improved ground truth depth maps [22]. We compared our
results with ‘SfMLeaner’ [25], ‘Vid2Depth’ [15], ‘DDVO’
[23], ‘EPC++’ [14], ‘Monodepth2’ [6], ‘Uncertainty’ [17],
‘PackNet-SfM’ [7], and ‘UnRectDepthNet’ [12]. For the
training data, ‘M’ and ‘S’ indicate using a monocular video
sequence and stereo images, respectively. Our method pro-
duces superior performance compared to other methods.

2.6. Choice of ε value

We set ε = 10 for the differentiable soft-thresholding
function in (1) of the original manuscript. Table 3 shows the
quantitative results according to ε on the KITTI Eigen split
[3] raw dataset. Though the best accuracy was achieved
with ε = 10, no significant change was observed depending
on varying ε.

2.7. Ablation study of DepthNet and RefineNet

The evaluation of the proposed method was conducted
for three cases; ‘Ours (D)’ trained with only the DepthNet
usingLD without refining the depth map, ‘Ours (R)’ trained
with the DepthNet and RefineNet using LU only, and ‘Ours
(D+R)’ trained with the DepthNet and RefineNet using all
losses. Table 4 shows the quantitative results of the above
three cases on KITTI Eigen Split [3] dataset. The perfor-
mance gain of ‘Ours (D+R)’ over ‘Ours (R)’ supports the
effectiveness of the proposed confidence learning.

3. Confidence estimation results
3.1. Generating ground-truth confidence map

To train the confidence network, the ground truth confi-
dence map is required as supervision. Following existing
confidence estimation approaches [18, 11], the ground truth
confidence map cgt was computed by using an absolute dif-
ference between the ground truth disparity map and the in-
put disparity map (the pseudo ground truth disparity map in

our work).

cgt
p =

{
1, if |dp − dpgt

p | ≤ ρ.
0, otherwise.

(1)

The threshold value ρ is set to 3 for KITTI [16] and 1 for
Middlebury [19].

3.2. Evaluation metric

The area under the curve (AUC) [9] was used for eval-
uating the performance of estimated confidence maps. The
receiver operating characteristic (ROC) curve is first com-
puted by sorting disparity pixels in a decreasing order of
confidence and sequentially sampling high confidence dis-
parity pixels. It computes the error rate indicating the
percentage of pixels with a difference larger than ρ from
ground truth disparity. Then, AUC is computed by integral
of the ROC curve. The optimal AUC is computed according
to the fact that the error rate ζ is ideally 0 when sampling
the first (1− ζ) pixels [9], which is equal to

AUCopt =

∫ 1

1−ζ

x− (1− ζ)

x
dx = ζ + (1− ζ) ln 1− ζ.

(2)

3.3. Qualitative evaluation on KITTI 2015 dataset

Fig. 6 shows more qualitative results of confidence map
evaluated on KITTI 2015 dataset [16]. Input disparity maps
used for confidence estimation were obtained by Census-
SGM [8]. The estimated confidence maps for each input
disparity map are displayed every two rows. The top and
bottom of two rows indicate: (a) color image and input dis-
parity image, (b) CCNN [18] and CCNN w/τ , (c) LAFNet*
[11] and LAFNet* w/τ and (d) LAFNet and LAFNet w/τ .
‘w/τ ’ denotes the thresholded confidence map obtained us-
ing the soft-thresholding. LAFNet* denotes the LAFNet
[11] in which 3D cost volume is not used as an input. As
shown in Fig. 6, the proposed thresholded confidence maps
contain fewer ambiguous values than the original confi-
dence maps.



(a) (b) (c) (d)
Figure 6. Qualitative evaluation for confidence estimation on KITTI 2015 dataset [16]: Input disparity maps used for confidence estimation
were obtained by Census-SGM [8]. The estimated confidence maps for each input disparity map are displayed every two rows. The top and
bottom of two rows indicate: (a) color image and input disparity image, (b) CCNN [18] and CCNN w/τ , (c) LAFNet* [11] and LAFNet*
w/τ and (d) LAFNet and LAFNet w/τ . ‘w/τ ’ denotes the proposed network using the soft-thresholding. LAFNet* denotes the LAFNet
[11] in which 3D cost volume is not used as an input.



Figure 7. Qualitative result of uncertainty measure on KITTI Eigen Split [3] test dataset. From left to right, input image, estimated depth
map, and uncertainty map of the estimated depth are displayed.

4. Uncertainty Estimation Details

4.1. Evaluation metric

We evaluated the performance of the uncertainty estima-
tion used in the proposed model using the sparsification er-
ror [10]. Similar to the confidence evaluation, we first sorted
disparity pixels following decreasing order of uncertainty,
and iteratively extracted high uncertain disparities and pro-
vided them as inputs for computing error metrics. The ideal
error ranked by the true error to the ground truth is referred
to as oracle. With a sparsicifation error, we computed the
Area Under the Sparsification Error curve (AUSE) and the
Area Under the Random Gain (AURG) to evaluate the qual-
ity of the uncertainty map. While the AUSE is measured as
the difference between the sparsification and its oracle, the
AURG is obtained as subtracting the estimated sparsifica-
tion curve from flat curve with a random uncertainty which
is modeled as a constant.

4.2. Qualitative evaluation on KITTI dataset

Fig. 7 shows the qualitative results of uncertainty map
evaluated on KITTI Eigen Split [3] test dataset. The qual-
itative result indicates that uncertain areas of the estimated
depth map are usually located around object boundaries and
sky.
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