A. Derivation of approximation

In the main paper, we proposed iterative latent variable
refinement (ILVR), where each transition of the generative
process is matched with a given reference image. Condition
in each transition was replaced with a local condition based
on our approximation, as suggested in Eq.7 of the main text.

Before detailed derivations of the approximation (Eq.7),
we review notations used in the main text. With pre-defined
hyperparameter @, latent variable z; can be sampled in
closed-form: z; ~ g(x¢|zo) (Eq.2). Trained model €p (x4, t)
predicts noise added in x, conditioned with time step .

From the property of the forward process that latent
variable x; can be sampled from zg in closed-form, de-
noised data z can be approximated with model prediction
€o(y, t):

Ty ~ fg(xt, t) = (It —V 1-— at 69($t7t))/\/a_t (A)

Below is a derivation of Eq.7, where we approximated each
conditioned Markov transition. We denote ¢ as ¢ and
fo(xy, t) as f(x;) for brevity. From Eq. A, each conditional
Markov transition with given reference image y can be ap-
proximated as follows:

po(Ti—1|zt, B(20) = B(y))
po(we—1|ze, d(f(2e-1)) = d(y))
Eq(ye_r 1y [Po(Ti—1]2e, o(f (21-1)) = 0(f(y£-1)))]-
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With linear property of operation ¢ and Eq. A, we have

Eqye_i |y Po(zt—1]2t, o(f(21-1)) = (f(Y£-1)))]
= Eq(yt_lly) o (re—1|ze, P(xi—1) = A(Ye—1),
d(eg(1-1)) = Plea(yi-1)))]
~ By, iy [Po(zi-1]e, d(zi-1) = ¢(ye-1))]-

As shown in Eq.8 and Algorithm 1 of the main text, we
first compute unconditional proposal z;_, then refine it by
ensuring ¢(z:—1) = ¢(yt—1). Therefore,

Eq(ye_r |y Po(zi—1]mt, (1) = O(y1-1))]
= Eq(y, 1| Po(d(ye—1) + (I — o) (z} 1)

e, d(@i-1) = D(yi-1))]
= Eq(yt—l\y)[pa(xé—ﬂxt)]
= po(zi_q|2t)

po(@e—1|zt, B(T1-1) = S(yi-1))-

N HR Nearest Bicubic PULSE ILVR
16} | 5.25 17.56 8.09 4.34 4.06
64 ] | 5.25 14.15 12.45 4.10 4.02

Table A: NIQE comparison on generation quality. Lower
is better. Scores measured with generated images from ref-
erence images downscaled by a factor of 16 and 64. ILVR
exhibits the highest perceptual quality.

CycleGAN [20] | MUNIT [5] | CUT [12] | Ours
85.9 104.4 76.2 79.8

Table B: FID comparison on image translation. FID mea-
sured with images translated from test set of AFHQ-dog.
ILVR is comparable to a state-of-the-art model.

B. Additional evaluations
B.1. Generation quality

We provide additional qualitative and quantitative eval-
uations on the generation quality of ILVR. We evaluate
images generated from low-resolution (LR) images down-
sampled by a factor of 16 and 64. Here, we compare
ILVR with bicubic interpolation and PULSE [9], a super-
resolution study that leverages pre-trained StyleGAN [7].
PULSE finds a latent vector that generates an image that
downscales to the given LR image. We used publicly avail-
able StyleGAN2 [8] model' trained at 256 x 256. Combin-
ing loss function from PULSE and StyleGAN2, we search
for latent vectors with a loss as follows:

Liotal =[|0(G(2)) = ¢(»)I13
+ GEOCROSS(UM ceey U14) + uLnoisey (B)

where each term refers to mean square error (MSE),
geodesic cross loss [9], and noise regularization [8], respec-
tively. MSE ensures generated image G(z) and reference
image y to match at low-resolution space. The geodesic
cross loss ensures the latent vectors vy, ..., v14 remain in the
learned latent space. Noise regularization L, ,;s discour-
ages signal sneaking into the noise maps of StyleGAN?2.
We chose & = 5e3. Refer to StyleGAN?2 literature for de-
tails on the noise regularization. We inherited latent vector
initialization and learning rate schedule from StyleGAN2.
Fig. A presents additional qualitative results. ILVR and
PULSE both show high-quality images generated from ex-
tremely downscaled images. Table. A shows NIQE [10]
score, which is a no-reference metric that measures the per-
ceptual quality of an image. ILVR shows higher perceptual
quality, even better than the original 256 reference images
(HR). We measured NIQE with reference images in Fig. B.

https://github.com/rosinality/
stylegan2-pytorch
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Figure A: Qualitative comparison on generation quality. Images generated from reference images downsampled by a
factor of 16 and 64. From LR images, ILVR generates faces with detailed features.

Figure B: Images used for NIQE score.

B.2. Image translation

We compare Frechét inception distance (FID) [3] with
image translation models on cat-to-dog (AFHQ [1] dataset)
translation. Table. B shows the results. FID scores are calcu-
lated with the test set from AFHQ [1]. ILVR presents com-
parable performance to CUT [12], which is a state-of-the-art
on cat-to-dog translation. Note that ILVR requires a model
trained only on dog images, unlike the other models trained
on both cat and dog images. We expect our result to broaden
the applicability of DDPM to such image translation tasks.

B.3. Additional samples

Fig. C shows samples generated with publicly available
guided-diffusion [2] trained on LSUN [17] datasets. We
present additional editing with scribbles in Fig. D.

C. Implementation details

We trained unconditional DDPM with publicly available
PyTorch implementation.”

C.1. Low-pass filters

We used bicubic downsampling and upsampling with
correctly implemented function [14]. In Fig. E, we com-
pare generated samples where the same noises were added

2https://github.com/rosinality/
denoising-diffusion-pytorch

through the generative process, only differing resizing ker-
nels. Among kernels, images are almost identical, suggest-
ing that our method is robust to kernel choice.

C.2. Datasets and training

Here we describe datasets and training details. For all
datasets, we trained at 2562 resolution with a batch size 8.

FFHQ [7] consists of 70,000 high-resolution face im-
ages. We trained a model for 1.2M steps.

METFACES [6] consists of 1,000 high-resolution por-
trait images. To avoid overfitting, we fine-tuned a model
pre-trained on FFHQ [7], for 20k steps.

AFHQ [I] consists of 15,000 high-resolution animal
face images, which are equally split into three categories:
dog, cat, and wild. We trained on the train set of dog cat-
egory, then used test sets of three categories as reference
images to demonstrate multi-domain image translation.

Places365 [19] consists of 10M images of over 400
scene categories. We trained a model on a waterfall cate-
gory, which consists of 5,000 images. We used this model
to paint-to-image task.

LSUN Church [17] consists of 126,227 images of
churches. We trained a model for 1M steps.

Paintings used for paint-to-image task are collected
from the web.

C.3. Architecture

We trained the same neural network architecture as Ho et
al. [4], which is U-Net [13] based on Wide ResNet [ 18]. De-
tails include group normalization [16], self-attention blocks
at 16 x 16 resolution, sinusoidal positional embedding [ 5],
and a fixed linear variance schedule 31, ..., Br.

C.4. Evaluation

In Table 1 of the main text, we calculated FID scores
on 50,000 real images and 50,000 generated images using
code?® of PyTorch framework.

3https://github.com/mseitzer/pytorch-fid
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Figure C: ILVR samples with guided-diffusion [2]. Publicly available guided-diffusion trained on LSUN Bedroom, Horse,
and Cat datasets. For efficiency, samples are generated with 250 steps using uniform stride, following IDDPM [11]. Con-
ditions are given in factor N=16,64 from time step 250 to 100. Samples share either coarse or fine semantics from the
references.
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Figure D: Additional editing with scribbles. Faces generated with our reproduced model trained on FFHQ [7]. Bedrooms
generated with publicly available model [2] trained on LSUN Bedroom [17].
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Figure E: Ablation on low-pass filters. First column set: samples from downsampling factor N=4; Second column set:
samples from downsampling factor N=32. Samples are generated with bicubic, lanczos2, lanczos3, bilinear interpolation for
downsampling and upsampling. There is only a minor difference among filters, such as the exact position of teeth and hair.
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