
Supplementary Material for

Motion-Aware Dynamic Architecture for Efficient Frame Interpolation

In this supplementary document, we first show in Sec. 1
how the resource-aware regularization term in Eq. (11)
can be decomposed into Eq. (14) in the main manuscript
for our training curriculum. Then, we describe addi-
tional implementation details in Sec. 2 as well as the train-
ing/validation curves to analyze the training dynamics of the
proposed framework in Sec. 3. We also show more detailed
FLOPs/latency for each component of our model in Sec. 4,
and demonstrate additional qualitative results in Sec. 5 and
Sec. 6

1. Resource-aware loss decomposition
Recall the formula for calculating our resource-aware

regularization term, Eq. (11) in the main manuscript, re-
stated below:

Rp =

ns∑
i=1

nd∑
j=1

ms
p,i ·md

p,j · C (H(·, · ; si, dj)) (1)

=

ns∑
i=1

nd∑
j=1

ms
p,i ·md

p,j · C (Hi,j) , (2)

where we use the shortened notationHi,j = H(·, · ; si, dj)
for simplicity. According to the second step of our training
curriculum, we fix the scale to the original resolution, which
we denote as Hŝ,j . Then, C (Hŝ,j) does not depend on the
index i anymore, which let us to expressRp as

Rp =

nd∑
j=1

md
p,j · C (Hŝ,j) ·

ns∑
i=1

ms
p,i (3)

=

nd∑
j=1

md
p,j · C (Hŝ,j) , (4)

since ms
p,i is a one-hot vector and

∑ns

i=1m
s
p,i = 1. Restat-

ing our full loss function (Eq. (13) in the main manuscript)
to region-wise loss function with the region index p, our
loss function for the second training step becomes

Ltotal,p = Lr,p + λd

nd∑
j=1

md
p,j · C (Hŝ,j) , (5)

where we rename the scaling hyperparameter λ to λd to em-
phasize that we are training for the DepthNet of our SD-
finder.

Similarly, for the third training step, we denote our fixed-
depth, varying-scale model as Hi,d̂j

. Starting again from
Eq. (2), we can reiterate Eq. (3)-(4) with interchanged scale
and depth indices, so that

Rp =

ns∑
i=1

ms
p,i · C

(
Hi,d̂j

)
·

nd∑
j=1

md
p,j (6)

=

ns∑
i=1

ms
p,i · C

(
Hi,d̂j

)
. (7)

Then, the full loss function for the third training step can be
expressed as

Ltotal,p = Lr,p + λs

ns∑
i=1

ms
p,i · C

(
Hi,d̂j

)
, (8)

where λ is again renamed to λs to emphasize that we are
training for the ScaleNet of our SD-finder.

Combining Eq. (5) and (8), we can decompose Eq. (1) as

Rp = λs

ns∑
i=1

ms
p,i ·C

(
Hi,d̂

)
+λd

nd∑
j=1

md
p,j ·C (Hŝ,j) , (9)

where λs = 0 for the second training curriculum, and λd =
0 for the third, respectively. This summarizes the detailed
processes to obtain Eq. (14) of our main manuscript.

2. Additional implementation details
To modify the original CAIN [10] to have multiple exits,

we did not use any additional layers but introduced an ad-
ditional skip connection for each exit. For instance, if our
SD-finder assigns the network depth to be one, 1) we com-
pute the first group of residual blocks (Block1 in Fig. 2), 2)
the output of Block1 passes through a new skip connection
assigned to the first exit, which skips Block2-5 of CAIN,
3) we add the values contained in the global skip connec-
tion of CAIN, and 4) the output feature is passed through

1



FLOPs (x 1M) L1 loss Full loss PSNR
Tr

ai
ni

ng
Va

lid
at

io
n

S
te

p 
2:

 D
ep

th
N

et
 tr

ai
ni

ng

Tr
ai

ni
ng

Va
lid

at
io

n

S
te

p 
3:

 S
ca

le
N

et
 tr

ai
ni

ng

Figure 1. Training dynamics for step 2 and step 3 of our training curriculum. We show the FLOPs, `1 loss (Lr), and the full loss (Eq. (13)
in the main manuscript) for training, and additionally the average PSNR for the validation set. Our final model is the one with the lowest
(full) validation loss, which shows the best performance in the accuracy-resource trade-off curves.

the final convolution layer of CAIN and the PixelShuffle
layer, which becomes the final output interpolation of the
first exit. This process is similar to the ‘intermediate image
reconstruction (Fig. 6)’ in the original CAIN paper, except
that we compute the loss for all exits. Using this modified
multi-exit CAIN, we train step 1 of our training curriculum
with learning rate 1 × 10−5 and batch size 16 for 10k it-
erations. For step 2 and 3, we also fix the learning rate to
1 × 10−5, but the batch size is set to fully utilize the GPU
memory, which makes the minibatch size to be 8 for step 2
and 3 for step 3, respectively.

3. Training dynamics

We show the detailed training dynamics for our train-
ing step 2 and 3 in Fig. 1, where we train the DepthNet
part of our SD-finder in step 2 and the ScaleNet part in
step 3. Since the FLOPs loss is highly discretized, train-

ing is sometimes unstable; as visualized in the upper part
of Fig. 1, there are cases when the validation FLOPs sud-
denly decrease significantly and the `1 loss increases cor-
respondingly, and the increased overall loss cannot recover
again with the current hyperparameters. We found that it is
more tricky to train the DepthNet, which is why we learn the
DepthNet first and fix its parameters for step 3. Note that,
the proposed method can show better accuracy (PSNR) or
more reduced FLOPs than the results reported in the main
manuscript, but our final result is chosen to be the model
with the lowest (full) validation loss, which implies that it
is the best point on the accuracy-resource trade-off curve.

4. Detailed FLOPs / latency analysis

Table 1 shows the detailed FLOPs calculation and GPU
latency measurements for each component in our proposed
framework. For FLOPs, we can see that CAIN-D and



Table 1. Detailed FLOPs and GPU latency calculation for Xiph-2K videos.

GFLOPs GPU Latency (ms)

CAIN [10] CAIN-S CAIN-D CAIN-SD CAIN [10] CAIN-S CAIN-D CAIN-SD

Flow estimation - 22.55 22.55 22.55 - 25.5 25.5 25.5
SD-finder - 1.28 1.42 2.71 - 0.6 0.5 1.1
Interpolation 3,132.78 3620.19 1,674.92 1,424.54 224.6 201.0 169.7 138.8
Super-resolution - 146.95 - 148.64 - 65.1 - 71.3

Total 3,132.78 3,790.97 1,698.89 1,598.44 224.6 292.2 195.7 236.7

CAIN-SD greatly reduces the number of operations re-
quired for the ‘Interpolation’ part. Since we use the down-
scaled input frames for optical flow estimation, the required
FLOPs for ‘Flow estimation’ and ‘SD-finder’ is almost
negligible. Also, the ‘Super-resolution’ part does not re-
quire that many operations, which tells us that interpolation
model is the bottleneck in FLOPs consumption.

For the GPU latency, although optical flow estimation or
the super-resolution parts do not require many FLOPs, they
still have many layers that have to be sequentially passed
through, which lead to considerable running time. We can
see that CAIN-D and CAIN-SD significantly reduce the
running time of the interpolation model compared to the
baseline CAIN, which lead to Since SD-finder is composed
of two very lightweight 3-layer CNNs, the actual latency
requirement is negligible in the overall latency.

5. Additional Qualitative Results
Fig. 2 and 3 depicts the additional qualitative results that

are analogous to Fig. 3 and 4 in the main paper. From Fig. 2,
we can see that the PSNR values for the regions that have
relatively plain textural details or the background regions
that have small motion are similar regardless of the model
depth, and our SD-finder chooses to exit early to save com-
putation. On the other hand, complex regions with large
motion are passed through deeper layers, while some re-
gions find a compromise in between and choose to exit in
the middle (d =D©).

In Fig. 3, we demonstrate the additional qualitative re-
sults with the scale predictions. Similar to the results shown
in the main paper, s = 1 or s = 2 is usually chosen and
s = 4 is not due to the notable performance degradation.
Note that, for some regions, downscaling and upscaling
helps to find the correct position of the moving objects and
the PSNR for s = 2 is higher than the original scale, even
with less computation cost.

6. Video Demo
Please refer to our project page1 for more qualitative

results and the videos on full-frame comparisons that ag-
1https://myungsub.github.io/adaptive-int

gregate all patches. There exists some boundary effects
between the borders of the patches that contain extremely
large motion, but the visual quality of our proposed CAIN-
SD model is competitive with the full CAIN in general.

https://myungsub.github.io/adaptive-int


2K BoxingPractice 008
19 - 0
5 - 3

4K DrivingPOV 068
6 - 0
37 - 4

Image / Depth map d = Ⓐ d = Ⓓ d = Ⓔd = Ⓑ d = Ⓒ

40.90 dB 40.99 dB 40.99 dB 40.97 dB 41.17 dB

33.84 dB 35.49 dB 36.98 dB 37.92 dB 38.31 dB

38.34 dB 38.40 dB 38.43 dB 38.43 dB 38.44 dB

33.21 dB 33.60 dB 33.92 dB 33.90 dB 34.00 dB

GT

2K Square 068
31 - 0
10 -4

4K FoodMarket2 023
40 - 0
29 - 3

35.11 dB 35.87 dB 36.73 dB 36.82 dB 37.07 dB

30.13 dB 31.18 dB 33.13 dB 33.27 dB 33.44 dB

32.72 dB 34.24 dB 34.33 dB 34.40 dB 34.51 dB

26.47 dB 28.88 dB 28.98 dB 29.10 dB 29.18 dB

Figure 2. Comparison between the local regions with different depth predictions. d = E© represents the full model inference (original
CAIN), while d =A© shows the output at the first early exit. Blue box shows the “easy” regions where the model already performs well on
its first exit and saves excessive computations. On the other hand, deeper layers are needed to maintain the performance for more complex
regions with the green box, where our model decides to pass through the full interpolation model.



4K Box 008
04 - 0
14 - 1

4K Driving 038
04 - 0
27 - 0

Image / Scale map s = 1 GTs = 2 s = 4

30.75 dB 29.68 dB 25.85 dB

26.88 dB 29.28 dB 27.75 dB

33.96 dB 31.91 dB 27.70 dB

31.41 dB 30.17 dB 26.91 dB

4K Food2 008
18 - 1
35 - 1

4K S&T 023
14 - 0
29 - 1

30.06 dB 36.43 dB 34.32 dB

29.26 dB 29.13 dB 26.26 dB

37.17 dB 35.03 dB 30.29 dB

35.17 dB 34.51 dB 31.21 dB

Figure 3. Comparison between the regions with different scale predictions. Regions with the red box significantly lose the textural details
when the input frames are downscaled, so the original scale is used to maintain the performance. Green box shows the regions where our
SD-finder chooses the scaling factor of 2, where we can save computations compared to s = 1 with even increased PSNR.


