A. Additional Figures

Here, we show additional qualitative results.

Successive translations In the main text, we discussed
that sinusoidal embedding enables non-integer coordinates.
Thus MS-PE generates consistent shapes at locations suc-
cessively shifted by a pixel. Fig. A show digits generated at
locations shifted vertically and horizontally.

Effect of 2D noise SS-PE rely on 2D noise input of
StyleGAN [4, 5], as shown in Fig.4 of the main text. Fig. B
exhibits additional results with models trained on FFHQ [4].
In Fig. B(b), the hairstyle is modified by a 2D noise map and
shows the largest standard deviation.

GAN Inversion Our method facilitates robust GAN in-
version. Additional GAN inversion results are presented in
Fig. C.

Multi-scale generation MS-PE is effective in multi-
scale generation with a single model. To further improve
visual quality, we randomly resized (MS-PE w/ Random
Resizing) the explicit positional encoding at each training
iteration. Additional samples with “MS-PE w/ Random Re-
sizing” are presented in Fig. D.

DDPM Reconstruction In the main text, we demon-
strated the appliance of our method to denoising diffusion
probabilistic models [3, 10]. Fig. E shows additional recon-
struction results.

B. Detailed Introduction to DDPM

Here, we provide an additional description on Denois-
ing Diffusion Probabilistic Models (DDPM) [3, 10]. DDPM
consists of two processes: fixed diffusion process and
learned reverse process. The diffusion process is a sequence
that adds Gaussian noise to an image x with a fixed vari-
ance schedule (i, ..., 7. Latent variables x1, ...,z are
sampled from the diffusion process:

Q(It|$t—1) = N(%; AY 1- Btﬂft—hﬁtI)- (A)

To generate images from random Gaussian noise, DDPM
learns the reverse of the diffusion process, which is also a
sequence of Gaussian translation:

po(wi—1|w) = N(x-1; po (a1, ),071). (B)

Here, variance is a fixed constant [3] and the mean is learned
with a neural network 6. Here, 6 is a fully-convolutional U-
Net [©] with input and output of the same dimensionality.
As diffusion (Eq. A) and reverse (Eq. B) process are both
Gaussian translations, they are stochastic. Sec.4.5 presents
stochastic reconstruction where encoding (diffusion) pro-
cess and decoding (reverse) process are both stochastic.
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Figure A: Generation at successively shifted locations.
We generated digits at locations shifted vertically by Ah
and horizontally by Aw, sharing the same inputs. Digits
show consistent shapes.
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Figure B: Effect of 2D noise input. Standard deviation of
each pixel over 100 2D noise map instances. SS-PE gen-
erates inconsistent hairstyles and larger standard deviations
compared to the baseline and MS-PE.

C. Implementation Details
C.1. Dataset

Color-MNIST is a spatially biased dataset we cus-
tomized for toy experiments presented in Fig.2, Fig.4, Fig.9
of the main text. The dataset consists of 60,000 images at
64 x 64 resolution. Digits range from 0 to 9, and their num-
bers are uniform. Digits are located in the 32 x 32 patch at
the upper-left corner.

Flickr Faces HQ [4] consists of 70,000 high-quality
face images crawled from Flickr. The images are carefully
aligned [6], thus exhibits strong location bias.
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Figure C: GAN Inversion. (a) Standard position. (b) Translation of 32 pixels to the right. (c) Translation of 32 pixels to
the bottom. (d) Translation of 128 pixels to the right. (e) Standard position. (f) Translation of 128 pixels to the right. (g)
Translation of 32 pixels to the bottom. We use circular shift (roll) for translations.

Figure D: Multi-scale generation. 2562, 3842, 5122 resolution images generated with a single model designed for 2562 .
Discriminator has seen images at 2562 resolution only.
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Figure E: DDPM Reconstruction. Given source images are encoded to various time steps (T=100 to 900) then decoded with
a learned reverse process. Our method preserves location of the given digits.

LSUN Church [13] consists of 126,227 images of
churches. Center cropped 256 x 256 images are used for
training models.

C.2. Architecture

StyleGAN2 For experiments except Sec.4.5 of the main
text, we used StyleGAN2 [5] trained at 256 x 256 resolu-
tion and inherited most of the architecture details of Style-
GAN?2. The details include weight demodulation, bilinear
up/down sampling [ 4], noise injection, skip/residual con-
nection in generator/discriminator, equalized learning rate,
leaky ReLU activation with slope 0.2, and minibatch stan-
dard deviation at the discriminator. These setups correspond
to the “baseline” in the main text. We replaced the constant
tensor with 2D sinusoidal positional embedding [11]. We
also added scale-specific 2D sinusoidal positional embed-
ding at each scale, as described in Eq.3 of the main text.
Therefore seven positional encodings in total (from 4 x 4 to
256 x 256).

DDPM In Sec.4.5 of the main text, we inherit the ar-
chitecture details of DDPM [3], including U-Net [9] archi-
tecture, group normalization [12], self-attention blocks, lin-
ear (3; schedule, and sinusoidal embedding to indicate time
step. Our 64 x 64 model use four feature map resolutions (
64 x 64 to 8 x 8) and self-attention blocks at 8 x 8 resolution.
We added 2D sinusoidal positional encoding after residual
blocks at downscaling layers and after upsampling layers.

C.3. Training

StyleGAN2 For every configuration, we trained models
for 6.4M images with batch size 32. We used non-saturating
loss [1] with R; regularization [8]. We used only random

horizontal flip for data augmentation. We used ADAM [7]
optimizer with 5; = 0, 52 = 0.99. For MS-PE with Ran-
dom Resizing in Sec.4.2, we randomly selected resolution
from {2562,320%, 3842, 4482, 5122} with uniform proba-
bilities at each iteration.

DDPM We trained DDPM on our color-MNIST for
9.6M images with batch size 16. We did not use any data
augmentations. We used ADAM [7] optimizer with 5; =
0, B2 = 0.99.

C.4. Evaluation

Similarity metric In Fig.2(d) of the main text, we mea-
sured the similarity of digits during successive translations.
To compare the original digit with the shifted digit, we crop
32 x 32 patch A and B, as shown in Fig F. We then convert
them to grayscale and measure similarity as follows:

sim = Z min(A; j, Bij)/ Z maz(A;j, Bij), (C)
i,j ,J

where i, j are spatial indexes. This metric is a continuous
relaxation of mean Intersection over Union (mloU).

Shift in the constant tensor. Fig.2(d) of the main text
presents successive translations by a pixel. As described in
Sec.3.4, a single-pixel shift in the image space corresponds
to a 2!~ L shift in the constant tensor of the baseline Style-
GAN (L-scale). To implement a non-integer shift in the con-
stant tensor, we interpolated features of nearest integer co-
ordinates, as shown in Fig. G.

Fréchet Inception Distance (FID) [2] We calculated
FID scores on 50,000 real images and 50,000 generated im-
ages using code' of the PyTorch framework.

Ihttps://github.com/mseitzer/pytorch-fid
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Figure F: Measuring similarity of patches. It is a con-
tinuous relaxation of mloU. ¢, j are spatial indexes where
0<4,j <3l
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Figure G: Interpolation at the constant tensor. To imple-
ment non-integer shift in the constant tensor of baseline
StyleGAN, we interpolated features at nearest integer co-
ordinates. Zs denote features at each coordinate. We imple-
ment a one pixel shift of image by replacing z(g o) with z,.
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