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1. More Discussion of Algorithms

1.1. Supernet Training

Figure 4 details the supernet training stage of our ap-
proach. In fact, it’s inherently efficient regarding GPU uti-
lization. Even on powerful machines such as Tesla V100,
it can make full use of GPU without special optimization.
As most of the existing deep learning frameworks allow
paralleled execution between data generation and gradient
calculation, our algorithm can exploit this parallelism to the
extreme since a mini-batch of data is reused by m times of
backpropagation. The GPUs are always busy because the
data is ready whenever required, which shortens the training
time. Moreover, our method works in a single-path way,
which is memory friendly.

Irregular Search Spaces. Note that SF in the paper can
be easily extended by a preprocessing function in case of
irregular search spaces (i.e. the number of operations are
not the same for each layer). We only need to make a minor
modification of Algorithm 1. Say the l-th layer has ml

choices. Suppose M = max(ml), we randomly choose
M −ml extra operations from ml choices and regard these
extra options as different ones from the original search space.
Therefore, the input condition of Algorithm 1 still hold and
we can use it directly. This procedure can be regarded as an
approximated SF. However, perfect SF for irregular cases
remains as our future work.

1.2. Evolutionary Searching Pipeline

With our supernet fairly trained as a model evaluator, we
adopt an evolutionary-based algorithm for searching, de-
tailed in Algorithm 2 (main text) and Figure 1. Generally,
it is built on the ground of MoreMNAS [5] by replacing
its incomplete-training evaluator with our fairly trained su-
pernet. FairNAS supernet exhibits tremendous speed-up in
terms of GPU days by two orders of magnitudes. We also use
Proximal Policy Optimization as the default reinforcement
algorithm [11].

*This work was done when all the authors were at Xiaomi AI Lab.
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Figure 1. Evolutionary searching with the supernet trained with
strict fairness. In each generation, candidate models in the current
population inherit weights from the supernet for evaluation. Their
estimated accuracies are fed into the searching pipeline as one of
the objectives. The evolution loops till Pareto optimality.

NAS Methods Type Ct Cs EF SF

SMASH [2] Hypernet - - ✗ ✗

One-Shot [1] Supernet 4‡ 3.3 ✗ ✗

DARTS [9] Gradient-based 0.5† 0 ✗ ✗
FBNet [13] Gradient-based 9 0 ✗ ✗
ProxylessNAS [3] Gradient-based/RL 8.3 0 ✗ ✗
SPOS [6] Supernet+EA 12 <1 ✗ ✗

Single-Path NAS [12] Gradient-based 1.25‡ 0 ✓ ✗
FairNAS (Ours) Fair Supernet+EA 10 2 ✓ ✓

Table 1. Comparison of state-of-the-art weight-sharing NAS meth-
ods as per cost and fairness basis. Ct, Cs: train and search cost
measured in GPU days. EF: Expectation Fairness, SF: Strict Fair-
ness. †: searched on CIFAR-10, ‡: TPU

2. A Fairness Taxonomy
We compare current weight-sharing NAS methods based

on the defined fairness in Table 1. SPOS [6] satisfies Expec-
tation Fairness, while FairNAS meets Strict Fairness.

3. Experiment Details
Dataset. The supernet experiments are performed on

ImageNet [10] and we randomly select 50,000 images from
the training set as our validation set (50 samples from each
class). The remaining training set is used as our training set,
while the original validation set is taken as the test set to
measure the final performance of each model.
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3.1. Architectures of Searched Models

The searched FairNAS-A, B and C models are illustrated
in Figure 2.

3.2. Hyperparameters for MoreMNAS variant

We list the hyperparameters for the adopted MoreMNAS
[5] variant in Table 2. It has a population N of 64 models.
It also takes a hierarchical mutation strategy. Respectively,
prm, pre, ppr indicate probabilities for random mutation, re-
inforce mutation and prior regulator, where pre again is
divided into pK−M for roulette wheel selection, and pM for
reinforced controller.

Item value Item value

Population N 64 Mutation Ratio 0.8
prm 0.2 pre 0.65
ppr 0.15 pM 0.7
pK−M 0.3

Table 2. Hyperparameters for the second-stage EA search.

3.3. Training of stand-alone models

We picked 13 models to train from scratch whose one-
shot accuracies are approximately evenly spaced, ranging in
[0.641, 0.7]. We keep the exactly same hyperparameters as
the supernet training. Their corresponding stand-alone accu-
racies are within [0.692, 0.715]. Figure 3 plots the training
process, from which we observe the ranking of one-shot mod-
els are generally maintained. The model-meta (indices of
operations) of these 13 models are listed in Table 3. Besides,
the mapping from an index in model-meta to a searchable
operation is given in Table 4.

Index Model Meta

0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
2 [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0]
3 [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0]
4 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0]
5 [0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0]
6 [0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 2, 0]
7 [0, 1, 0, 1, 1, 4, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0]
8 [0, 1, 4, 1, 0, 3, 1, 1, 1, 1, 1, 1, 0, 2, 0, 0]
9 [0, 1, 0, 0, 1, 5, 1, 1, 0, 5, 1, 1, 0, 1, 2, 3]
10 [3, 1, 4, 1, 3, 4, 1, 4, 1, 3, 1, 1, 3, 1, 2, 0]
11 [0, 1, 4, 3, 1, 3, 1, 1, 1, 3, 4, 1, 3, 1, 2, 3]
12 [1, 5, 3, 2, 1, 4, 3, 4, 1, 5, 1, 1, 3, 5, 5, 3]

Table 3. Model-meta of 13 sampled stand-alone models for ranking
analysis.

Model Meta Index kernel Expansion Rate

0 3 3
1 5 3
2 7 3
3 3 6
4 5 6
5 7 6

Table 4. Mapping between model-meta index and operations

3.4. Evolutionary Searching

The evolutionary search of FairNAS based on MoreM-
NAS variant [5] is shown in Figure 4. At each generation,
64 models are evaluated by our fair supernet, after 200 gen-
erations, the evolution converges, the Pareto-front is shown
in bright yellow, each dot represents a candidate network.

3.5. Object Detection

For object detection, we treat FairNAS models as drop-in
replacements for RetinaNet’s backbone [7]. We follow the
same setting as [7] and exploit MMDetection toolbox [4] for
training. All the models are trained and evaluated on MS
COCO dataset (train2017 and val2017 respectively) [8] for
12 epochs with a batch size of 16. The initial learning rate is
0.01 and decayed by 0.1× at epochs 8 and 11.

All baselines in the paper are mobile networks. The input
features from these backbones to the FPN module are from
the last depthwise layers of stage 2 to 51. The number of
output channels of FPN is kept 256 as [7]. We also use
α = 0.25 and γ = 2.0 for the focal loss. Given longer
training epochs and other tricks, the detection performance
can be improved further. However, it’s sufficient to compare
the transferability of various methods.

1We follow the typical nomination for the definition of stages and the
orders start from 1.
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Figure 2. Architectures of FairNAS-A,B,C (from top to bottom). MBEx Ky means an expansion rate of x and a kernel size of y for its
depthwise convolution
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Figure 3. Train and validation accuracies (ground truth) of all 13
stand-alone models when being fully trained with the same hy-
perparameters. Lines are labelled with corresponding one-shot
accuracies (predicted) sorted in descending order (as reflected by
color gradient).
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