
Evolving Search Space for Neural Architecture Search

**Supplementary Material**

Shape Block c n s

2242 × 3 3x3 conv 16 1 2

1122 × 16 MBL 16 1 1

1122 × 16 MBL 24 4 2

562 × 24 MBL 40 4 2

282 × 40 MBL 80 4 2

142 × 80 MBL 96 4 1

142 × 96 MBL 192 4 2

72 × 192 MBL 320 1 1

72 × 320 1x1 conv 1024 1 1

72 × 1024 7x7 avgpool - 1 1

1024 fc 1024 1 -

Table 1. Macro-architecture for FLOPs constraint setting. “MBL”

denotes the learnable Multi-Branch layer, c, n, s refer to the num-

ber of backbone filters, number of layers and the stride, respec-

tively.

A. Search Space Details

A.1. FLOPs Constraint Search Space

The 27 OPs space for FLOPs constraint, as shown in Fig-

ure 1, is derived from multiple groups of operation designs.

The first group of operations is depthwise (DW) convolution

with kernel size {3, 5, 7, 9, 11} and expand ratio {1, 3, 6}.

The second group is 3 × 3 dilated convolution with dila-

tion {2, 3} and expand ratio {1, 3, 6}, this kind of opera-

tion, according to the study in MixNet [13], is not efficient

under FLOPs constrained scenarios. However, we still in-

clude them in our search space to test the robustness of the

proposed method and see if it can find competitive archi-

tectures in a noised large search space. We also include the

1 × k − k × 1 convolutions with k ∈ {5, 7} and expand

ratio {1, 2, 4}, this operation is derived from the Inception-

ResNet [11] and is a rarely included operation in NAS liter-

ature as well. Our major experiments are conducted in this

setting.

The second space as shown in Figure 1 consists of DW

convolutions with grouped 1× 1 projections, a special vari-

ant of standard DW convolution that is included in FBNet

[15] and MixNet [13]. The options of kernel size and ex-

pand ratio for this variant are {3, 5, 7, 9, 11} and {1, 3, 6}
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Feature map size:

Figure 1. FLOPs Constraint search space details for all possible

operations except Identity Mapping. The corresponding layer is

recognized as reduction layer when Cin ̸= Cout. Each type of op-

eration has its corresponding kernel size k, dilation D, and expand

ratio T . We do not search the group number (Gin, Gout) for 1×1
projections in the primitive 27 OPs space, for the second space, we

search G in DW convolutions with varies k and T .

respectively, which is identical with standard DW convolu-

tions in 27 OPs space. For both search space, we use iden-

tical macro-architecture as shown in Table 1.

A.2. Latency Constraint Search Space

Our search space for Latency constraint as shown in Fig-

ure 2 and Table 2 is identical with the extended search space

used by Li et al. [4].

A.3. Identity Mapping Path

Inspired by the Inception-Resnet [11], our search space

has a residual structure, which means that all normal layers

in the network have an identity mapping path (identity op-
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Shape Block c n s

2242 × 3 3x3 conv 16 1 2

1122 × 16 MBL 16 1 1

1122 × 16 MBL 32 4 2

562 × 32 MBL 64 4 2

282 × 64 MBL 128 8 2

142 × 128 MBL 256 4 2

72 × 256 1x1 conv 1024 1 1

72 × 1024 7x7 avgpool - 1 1

1024 fc 1024 1 -

Table 2. Macro-architecture for Latency constraint setting. “MBL”

denotes the learnable Multi-Branch layer, c, n, s refer to the num-

ber of backbone filters, number of layers and the stride, respec-

tively.
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Dual Convolutions (DC) 𝑘 ∈{3}, 𝑇 ∈{1,2}.
Spatially Separable Convolutions (SSC) 𝑘 ∈{5,7}, 𝑇 ∈{1,2,4}.

Depthwise Convolutions (DW) 𝑘 ∈{3,5,7}, 𝑇 ∈{1,3,6}.

Convolutions (C) 𝑘 ∈{3}, 𝑇 ∈{1,2}.

Feature map size:

Figure 2. Latency Constraint search space details for all possible

operations except Identity. These details are identical with the ex-

tended search space used by Li et al. [4]. The corresponding layer

is recognized as a reduction layer when Cin ̸= Cout. Each type

of operation has different kernel size k or expand ratio T .

eration). The identity mapping path will always be sampled

during supernet training and its path probability p is fixed

to be 1 during fitness indicator updates.

A.4. Search Space Size Computation

For the case when we use 27 OPs space and layer-wise

space size K = 5, the number of possible architectures

Structure Size

NASNet [16] cell-based 7.1× 1016

Amoeba [9] cell-based 5.6× 1014

ENAS [8] cell-based 5.0× 1012

DARTS [7] cell-based 2.4× 1011

Proxyless [1] single-branch 3.0× 1017

SPOS [2] single-branch 1.1× 1012

NSE ∗ multi-branch 1.4× 10110

Table 3. ImageNet NAS search space size compared. ∗ when we

use 27 OPs space and K = 5.

Combarch is computed as follows:

We denote the number of k-combinations given n ele-

ments as Cn

k
= n!

k!(n−k)! . The number of possible combina-

tions is Combnorm =
∑5

k=0 C
27
k

for the normal layer and

Combredu =
∑5

k=1 C
27
k

for the reduction layer. There are

in total 16 normal layers and 6 reduction layers in FLOPs

constrained macro architecture. Each layer has its own

selected candidate operations. Thus the total number of

possible architectures is Combarch = (Combnorm)16 ×
(Combredu)

6 ≈ 1.4× 10110.

B. Details of Training Configs

For every supernet training, we use Nesterov SGD with

0.9 momentum, weight decay 4e−5, batch size 1024 with

100 epochs. The initial learning rate is 0.4 and gradually

reaches 0 through cosine learning rate decay with warm-up

for 2 epochs . We use Adam optimizer with an initial learn-

ing rate of 0.1 to update fitness indicators, and we perform

such updates every two supernet updates. Fitness indicators

Θ are initialized to 0 and the corresponding pruning thresh-

old is set to -2. While a larger random sample number D

helps to find better Pareto front, limited by its computational

cost, we set sample sizes as D = 2000, De = 100.

For the hyperparameters of the resource constraint reg-

ularization, we set α = 1e−5, β = 2, τ = 300 for FLOPs

(M) constraint and α = 2e−2, β = 2, τ = 7 for Latency

(ms) constraint. The α parameter for Latency constraint is

set higher so that two constraints are of similar magnitude.

For model retraining, we increase the number of epochs

to 350, with batch size 2048, learning rate 0.8, weight de-

cay 4e−5 [4] for FLOPs constraint and 1e−4 [6] for Latency

constraint, together with exponential moving average with

decay 0.9999. For a fair comparison, swish activation, SE

module together with identical training configs from Effi-

cientNet [12] are optionally used subject to the specific set-

tings.

C. Ablation on Pruning Threshold

To show how the trade-off between early and accurate

search space simplification affects the optimized search



-1 -2 -3 -4
Threshold

70.5

71.0

71.5

R
et

ra
in

 T
op

-1
 A

cc
ur

ac
y

(a)

69.0 69.5 70.0 70.5 71.0 71.5 72.0
Retrain Top-1 Accuracy

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Threshold: -1
Threshold: -2
Threshold: -3
Threshold: -4

(b)

Figure 3. Comparison of 1-st round ”aggregated” search space

with respect to different pruning thresholds. “aggregated” denote

the search space achieved by NSE after Pareto front aggregation.

All results are based on identical search space initialization with

layer-wise space size K = 5. For each ”aggregated” search space,

we randomly sample 20 architectures that have FLOPs within the

interval of [323M, 327M]. Each model is then trained from scratch

for 50 epochs to retrieve the retrain Top-1 accuracy illustrated

above. (a) accuracies are shown in mean with 95% confidence

intervals.

space to be inherited, we evaluate the quality of aggregated

search space achieved by different pruning thresholds in

Figure 3. As the threshold -1 is too close to 0 (the initial-

ized value of fitness indicators Θ), its result is significantly

worse when compared to lower thresholds. However, as the

threshold is set lower than -2, the result seems saturated, and

a lower threshold could even harm the quality of optimized

search space.

D. Detection Result for NSENet

We have also evaluated our NSENet on object detection

task. We take the pretrained NSENet as a drop-in replace-

ment for the backbone feature extractor in EfficientDet-

D0 [14]. Table 4 shows the performance of our NSENet,

comparing with MobileNetV2 and the original backbone

network EfficientNet-B0. We trained the network with

identical configs as used by EfficientDet-D0. As shown in

Table 4, our model significantly improves mAP score over

MobileNetV2 and EfficientNet-B0 with fewer FLOPs.

Backbone FLOPs mAP

EfficientNet-B0 [12] 2.50B 33.8 [14]

MobileNetV2 1.0 [10] 2.24B 32.7

NSENet 2.18B 34.5

Table 4. NSENet object detection performance on COCO [5]

dataset. All experiments adopt identical configs as used by

EfficientDet-D0 [14] except backbone network.

E. Omitted Figures

Below we show the omitted figures. Figure 4 shows ar-

chitecture details for final results. Figure 5 shows interme-

diate results of aggregated search space subset on 27 OPs

space. Figure 6 illustrates the edging effect on Pareto fron-

tier.
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Figure 4. The detailed operations (a)(d) and structure (b)(c)(e) of our final results for FLOPs constriant and latency constraint, notice

that (b) is the final result derived from 27 OPs space while (c) inherits the final search space subset derived from the 27 OPs space, then

search on the second space as shown in Figure 1. The two numbers within the operation blocks shown in (c) represents the group number

(Gin, Gout) of 1x1 projections. The width of the blocks correspond to the T in (a)(d) for candidate operation, which denotes the expand

ratio of the corresponding operation, with details in Figure 1 and Figure 2. A straight line is put after every reduction layer in (b)(c) and

(e). A ”Scale Factor” [3] is used to adjust the amount of resource (e.g. FLOPs) consumed by the architecture by changing the number of

channels uniformly. We can see that architectures searched under FLOPs constraint tend to go deeper while both constraints prefer efficient

operations such as DW convolutions over less commonly used operations such as SSC convolutions.
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Figure 5. Intermediate results of the search space subset derived from Pareto front architecture aggregation. The results are based on the 27

OPs space and are from the same experiment where we get the NSENet-27 architecture. We can see that less commonly used operations

such as SSC convolutions and dilated DW convolutions are seldom in the search space subset. On the other hand, most of the operations

being included in the search space subset would last for multiple rounds or even till the final round, demonstrating the effectiveness of the

proposed pipeline in terms of knowledge extraction and preservation.
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Figure 6. Edging effect in constrained Pareto frontier retrieval. When trying to get Pareto-optimal architectures only with the samples

within the constraint interval, some of the samples (orange points in this figure) located close to the limit boundary (300M FLOPs) could

be mistakenly considered as Pareto-optimal architectures. By considering auxiliary samples outside the limit interval, we can alleviate this

issue. The data used in this figure is derived from the final round of search over 27 OPs space.
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