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Appendix
In this supplementary material, we provide additional im-
plementation details for our method in Sec. 1 of this ap-
pendix. In Sec. 2, we present detailed analysis of the Action
Genome dataset [1]. In Sec. 3, we show additional qualita-
tive results. Failure cases of our method are shown in Sec. 4.

1. Implementation Details
In this section, we present some implementation details

that were omitted in the main paper for brevity.

Box Function fbox It transforms the bounding boxes of
the subject and object to the 256 · 7 · 7 feature map. Follow-
ing [6], the bounding boxes of the subject and object are
firstly converted to a binary spatial mask of size 2 · 27 · 27
which indicates the location of the subject and object in
the frame. By forwarding the spatial mask into a convo-
lutional network (see Fig. 1), the location representation is
computed which can be added to the 256 · 7 · 7 feature map
of the union box.
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Figure 1: Illustration of the box function fbox

Queries and Keys in the Temporal Decoder For the
i-th batch in the decoder layers, the queries Q and keys
K are computed by adding the learned frame encoding
Ef = [e1, . . . , eη] to Zi = [Xi, . . . ,Xi+η−1]. Note that
Ef and Zi have the same length. Xi = {x1

i , . . . ,x
K(i)
i }

denotes all the relationship representations in the i-th frame.
Here we use braces to emphasize that there is no order be-
tween relationships in the same frame and Xi is still a ma-
trix (tensor) in our PyTorch code. Therefore, the first ele-

ments of Q and K can be formulated as:

q1 = k1 = e1 +Xi = [x1
i + e1, . . . ,x

K(i)
i + e1] (1)

which means the same encoding is added to the relation rep-
resentations in the same frame.

Object Classification FasterRCNN [5] based on
ResNet101 outputs a 2048-d feature vector and a class
distribution for each object proposal box. With multiplying
the class distribution by the linear matrix We ∈ R36×200, a
200-d semantic embedding is computed. Meanwhile, the
4-d box coordinate is forwarded into a feed-forward net-
work (see Fig. 2) to achieve a 128-d position embedding.
We concatenate the feature vector, semantic embedding and
position embedding, then project the concatenated vector
to a 37-d distribution (including the class background)
with two linear layers and a ReLU function in between.

Data Pre-processing When performing down-sampling
in the backbone, the visual information of ultra-small ob-
jects is damaged. In the experiments for SGCLS/SGDET,
we only keep bounding boxes with short edges larger than
16 pixels as [2] did.
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Figure 2: The box coordinate is forwarded into the feed-
forward network to compute the position embedding.

2. Benchmark from Action Genome
In the Action Genome (AG) dataset [1], each human-

object pair is annotated with three types of relation-
ships, namely attention, spatial, and contact relation-
ships where attention and contact relationships are formu-
lated in the order of <person-predicate-object>,
and spatial relationships are in the order of <object-
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person-looking at-bottle
bottle-in front of-person
person-holding-bottle
person-drinking from-bottle

person-not looking at-phone
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person-not contacting-phone

attention
spatial
contact

Figure 3: An example of the data annotation in Action
Genome dataset.

predicate-person>. Note that the spatial, and con-
tact relationships can be annotated with multiple labels in
Action Genome dataset. An annotation example is shown
in Fig. 3.

A benchmark following With Constraint is provided
by [1]. However, their evaluation code and object de-
tector have not been released. We also evaluate sev-
eral advanced image-based models. Although the rank-
ing of the model performances is consistent with [1] (VRD
[4]<Motif Freq [6]<MSDN [2]<RelDN [7]), the val-
ues of Recall@K are different. PredCLS-R@K (K =
[10, 20, 50]) computed by us are generally much higher,
e.g., PredCLS-R@20 from us = 69.5 whereas PredCLS-
R@20 from [1] = 49.4 for RelDN [7]. The reason for the
difference was found after discussing with the authors of
[1]. Each person-object pair is allowed to have either an at-
tention or contact relationship in [1]. Instead of, we allow
each person-object to have:

• <person-attention relationship-object>

• <object-spatial relationship-person>

• <person-contact relationship-object>

for With Constraint so that attention and contact rela-
tionships can be detected simultaneously. Each human-
object pair is allowed to have more than one spatial
or contact relationship when the confidence score is
higher than the threshold (0.9) following Semi Constraint.
For No Constraint, the most confident top-K relation-
ships are chosen no matter what kind of relationship.
SGCLS/SGDET-R@K (K = [10, 20, 50]) from [1] are
slightly higher than ours. We argue that their object de-
tector has a better performance which is crucial for SG-
CLS/SGDET. Note that person boxes in the ground truth

are annotated by the detector from [1] in the present version
of the Action Genome dataset.

Furthermore, there are two kinds of Recall@K met-
rics in [1]: image-wise and video-wise. The video-wise
Recall@K is not adopted in our work because the only
difference is whether the per-frame measurements in each
video are first averaged.
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Figure 4: Qualitative instances in the PredCLS setting fol-
lowing different strategies. Light blue relationships are true
positives predicted by STTran at the R@10 setting while
gray are false positives. The graph from Semi Constraint
is identical to the ground truth, whereas there are several
false positives in the graph from No Constraint without re-
striction.

3. Additional Results
We also report the average precision of predicates

APpred to evaluate the performance for single relationships.
The APpred evaluates the average precision of the predi-
cates where the subject and object boxes are given. The 10
most frequently occurring relationships in Action Genome
dataset (2 attention, 4 spatial and 4 contact relationships)
are evaluated with our model and GPS-Net [3], which per-
forms best in the image-based scene graph generation meth-
ods. The results are shown in the Table 1. Compared with
GPS-Net, our model has a great advantage in predicting
attention relationships with temporal dependencies and
also performs better for spatial relationships. However,
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Method APpred

not looking at looking at in front of on the side of beneath hebind holding not contacting touching sitting on mean
GPS-Net[3] 64.94 49.81 90.14 38.08 88.98 77.45 88.38 81.30 37.26 88.36 70.47

STTran 79.73 67.07 90.14 40.52 88.93 81.01 85.29 81.29 37.50 90.67 74.22

Table 1: The average precision of predicates APpred for the top-10 frequent relationships including 2 attention, 4 spatial
and 4 contact relationships. We compare our model with GPS-Net [3] which performs best on the Action Genome dataset
among the image-based baselines. With temporal dependencies, STTran has a great advantage in predicting attention
relationships and also performs better for spatial relationships. For contact relationships, GPS-Net outperforms STTran on
the prediction of holding and not contacting. The last column is the mean of APpred for these 10 relationships.

GPS-Net outperforms STTran on the prediction of holding
and not contacting for contact relationships.

Different performance of 3 generation strategies are
demonstrated in Fig. 4. For With Constraint, wearing is
abandoned since only one contact relationship is allowed
between each object pair. Although No Constraint al-
lows multi-label prediction, the result contains a lot of noise
when there are few pairs in the frame, especially bounding
boxes are given in PredCLS and SGCLS.

Additional qualitative results for dynamic scene graph
generation from the video are shown in Fig. 5. The dy-
namic scene graphs are generated with the top-10 confident
predictions with different Strategies in the SGDET task.
The green boxes denote the undetected truths. The melon
and gray colors indicate true positive and false positive re-
spectively. Correct relationships are colored with light blue
whereas relationships not in the ground truth are colored
with gray. In the video the person sitting on the bed holds
the medicine and bottle. Then she takes the medicine and
drinks water from the bottle.

4. Failure Cases
In order to clarify the limitation of the model, we ana-

lyze the results and summarize the following most common
failure cases:

1. The object is not detected (IoU< 0.5), particularly
small objects such as phone and medicine.

2. The predictions do not match the ground truth relation-
ships which are annotated by mistake.

3. The relationship is ambiguous and difficult to be iden-
tified even by humans.

4. The model predicts the wrong majority relationship in-
stead of the correct minority relationship.

The failure cases are shown in Fig. 6. We conjecture that
Failure 1 can be improved by a better object detector. Fail-
ure 2 and Failure 3 are caused by the human-labeled anno-
tations. Failure 4 is caused by the imbalanced relationship
distribution both in the dataset and in the real world.
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Frame Ground Truth With Constraint Semi Constraint No Constraint
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Figure 5: Qualitative results for dynamic scene graph generation. The scene graphs are generated with the top-10 confident
predictions with different Strategies in the SGDET task. The green boxes denote the undetected ground truth. The melon and
gray colors indicate true positive and false positive respectively. Correct relationships are colored with light blue whereas
relationships not in the ground truth are colored with gray. In the video the person sitting on the bed holds the medicine and
bottle. Then she takes the medicine and drinks water from the bottle.
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Figure 6: Instances of the most common failure cases. (1) The door is not detected by the object detector and there is no
corresponding relationships in the output. (2) STTran predicts that the person is standing on the floor while the ground truth
is incorrect. (3) Although the prediction from STTran is wrong, it is difficult for humans to identify whether the person is
looking at the broom or not. (4) carrying which occurs less frequently in Action Genome is predicted as holding with a
similar meaning and a higher frequency.
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