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Figure 1: Architecture of our proposed Temporal ID Network and 3DMM Generative Network.

In this supplemental document, we report the details of
our architectures used for the Temporal ID Network and the
3DMM Generative Network (Sec. 1). Moreover, we briefly
describe the state of the art DeepFake methods we compare
to, (see Sec. 2). In Sec. 3 and Sec. 4, we present additional
results to prove the generalization capability of our method.
In Sec. 5, we include scatter plots that show the separabil-
ity of videos of different subjects in the embedding space.
Finally, we analyze a real case on the web (see Sec. 6).

1. Architectures
Temporal ID Network We leverage a convolution neu-
ral network architecture that works along the temporal di-
rection and is composed by eleven layers (see Fig.1 (a)).
We use Group Normalization [14] and LeakyReLU non-
linearity for all layers except the last one. Moreover, we

adopt à-trous convolutions (also called dilated convolution),
instead of classic convolutions in order to increase the re-
ceptive fields without increasing the trainable parameters.
The first layer increases the number of channels from 62 to
512, while the successive ones are inspired by the ResNet
architecture [8] and include a residual block as shown in
Fig.1 (c). The parameters K and D of the residual blocks
are the dimension of the filter and the dilatation factor of the
à-trous convolution, respectively. The last layer reduces the
channels from 512 to 128. The receptive field of the whole
network is equal to 51 frames which is around 2 seconds.

3DMM Generative Network As described in the main
paper, the 3DMM Generative Network is fed by two 3DMM
feature vectors. The two feature vectors are concatenated
which results in a single input vector of 124 channels. The



network is formed by five layers: a layer to increase the
channels from 124 to 512, three residual blocks, and a last
layer to decrease the channels from 512 to 62. The out-
put is summed to the input 3DMM feature vector to obtain
the generated 3DMM feature vector (see Fig.1 (b)). All the
convolutions have a dimension of filter equal to one in order
to work frame-by-frame.

2. Comparison methods
In the main paper, we compare our approach with sev-

eral state of the art DeepFake detection methods, that are
described in following:

Frame-based methods
(i) MesoNet [1]: is one of the first CNN methods pro-

posed for DeepFake detection which uses dilated con-
volutions with inception modules.

(ii) Xception [4]: is a relatively deep neural network that is
achieving a very good performance compared to other
CNNs for video DeepFake detection [9].

(iii) FFD (Facial Forgery Detection) [5]: is a variant of
Xception, including an attention-based layer, in order
to focus on high-frequency details.

(iv) Efficient-B7 [12]: has been proposed by Tan et al. and
is pre-trained on ImageNet using the strategy described
in [15], where the network is trained with injected
noise (such as dropout, stochastic depth, and data aug-
mentation) on both labeled and unlabeled images.

Ensemble methods
(v) ISPL (Image and Sound Processing Lab) [3]: employs

an ensemble of four variants of Efficienet-B4. The
networks are trained using different strategies, such as
self-attention mechanism and triplet siamese strategy.
Data augmentation is performed by applying several
operations, like downscaling, noise addition and JPEG
compression.

(vi) Seferbekov [10]: is the algorithm proposed by the win-
ner of the Kaggle competition (Deepfake Detection
Challenge) organized by Facebook [6]. It uses an en-
semble of seven Efficientnet-B7 that work frame-by-
frame. The networks are pre-trained using the strategy
described in [15]. The training leverages data augmen-
tation, that, beyond some standard operations, includes
a cut-out that drops specific parts of the face.

Temporal-based methods
(vii) ResNet + LSTM: is a method based on Long Short

Term Memory (LSTM) [7]. In detail, a ResNet50 is
used to extract frame-level features from 20 frames
uniformly extracted from the video. These features are
provided to a LSTM that classifies the whole video.

High Quality (HQ) Low Quality (LQ)

Acc(%) / AUC DFD FR DFD FS DFD FR DFD FS

MesoNet Mean 57.0 / 0.65 54.0 / 0.57 58.1 / 0.61 52.7 / 0.53
Max 54.5 / 0.55 52.6 / 0.47 54.2 / 0.55 51.6 / 0.48

Xception Mean 51.9 / 0.74 78.5 / 0.93 49.8 / 0.48 58.5 / 0.63
Max 58.9 / 0.71 80.4 / 0.92 46.1 / 0.44 51.6 / 0.59

Effic.-B7 Mean 53.1 / 0.75 88.2 / 0.97 50.2 / 0.48 58.5 / 0.64
Max 62.5 / 0.73 79.4 / 0.96 45.2 / 0.44 55.9 / 0.66

FFD Mean 53.6 / 0.57 75.3 / 0.83 53.9 / 0.55 64.9 / 0.72
Max 52.5 / 0.56 60.2 / 0.78 50.9 / 0.50 51.7 / 0.64

AVG Mean 53.9 / 0.68 74.0 / 0.83 53.0 / 0.53 58.7 / 0.63
Max 57.1 / 0.64 68.2 / 0.78 49.1 / 0.48 52.7 / 0.59

Table 1: Video-level detection accuracy and AUC of frame-based
methods. We compare two strategies: averaging the score over
32 frames in a video and taking the maximum score. Results are
obtained on the DFD dataset on HQ videos and LQ ones, split in
facial reenactment (FR) and face swapping (FS) manipulations.

(viii) Eff.B1 + LSTM: This is a variant of the approach de-
scribed above, where the ResNet architecture is re-
placed by EfficientNet-B1.

Identity-based methods
(ix) A&B (Appearance and Behavior) [2]: is an identity-

based approach that includes a face recognition net-
work and a network that is based on head movements.
The behavior recognition system encodes the informa-
tion about the identity through a network that works on
a sequence of attributes related to the movement [13].

Note that all the techniques are compared at video level.
Hence, if a method works frame-by-frame, we average the
probabilities obtained from 32 frames uniformly extracted
from the video. Furthermore, to validate this choice, we
compare averaging with the maximum strategy. Results are
reported in Tab. 1 using the same experimental setting of
Tab. 2 of the main paper. The results prove the advantage
to use the averaging operation with respect to the maximum
value: the increase in terms of AUC is around 0.04, while
the accuracy increases (on average) of about 3%.

3. Additional results
To show the ability of our method to be agnostic to

the type of manipulation, we test our proposal on addi-
tional datasets, that are not included in the main paper. In
Tab. 2 we report the analysis on the dataset FaceForensics++
(FF++) [9]. Results are split for facial reenactment (FR) and
face swapping (FS) manipulations. It is important to un-
derline that this dataset does not provide information about
multiple videos of the same subject, therefore, for identity-
based approaches, the first 6 seconds of each pristine video



High Quality (HQ) Low Quality (LQ)

Acc(%) / AUC FF++ FR FF++ FS FF++ FR FF++ FS

MesoNet 55.4 / 0.58 57.1 / 0.61 55.4 / 0.57 57.3 / 0.62
Xception 55.6 / 0.58 79.0 / 0.89 51.9 / 0.57 69.2 / 0.79
Efficient-B7 54.9 / 0.59 85.4 / 0.93 50.6 / 0.54 65.6 / 0.80
FFD 54.4 / 0.56 69.2 / 0.75 53.5 / 0.56 63.3 / 0.70
ISPL 56.6 / 0.59 74.2 / 0.83 53.3 / 0.55 68.8 / 0.76
Seferbekov 58.3 / 0.62 89.9 / 0.97 53.0 / 0.55 79.4 / 0.87
ResNet + LSTM 55.0 / 0.58 59.0 / 0.63 56.2 / 0.58 61.9 / 0.66
Eff.B1 + LSTM 57.2 / 0.62 81.8 / 0.90 54.1 / 0.58 69.0 / 0.78

A&B 72.2 / 0.78 89.0 / 0.97 51.5 / 0.53 51.9 / 0.65
ID-Reveal (Ours) 78.3 / 0.87 93.6 / 0.99 74.8 / 0.83 81.9 / 0.97

Table 2: Video-level detection accuracy and AUC of our approach
compared to state-of-the-art methods. Results are obtained on the
FF++ dataset on HQ videos and LQ ones, split in facial reenact-
ment (FR) and face swapping (FS) manipulations. Training for
supervised methods is carried out on DFDC, while for identity-
based methods on VoxCeleb2.

are used as reference dataset, while the last 6 seconds are
used to evaluate the performance (we only consider videos
of at least 14 seconds duration, thus, obtaining 360 videos
for each manipulation method). For the FF++ dataset, our
method obtains always better performance in both the cases
of high-quality videos and low-quality ones.

As a further analysis, we test our method on a recent
method of face reenactment, called FOMM (First-Order
Motion Model) [11]. Using the official code of FOMM, we
created 160 fake videos using the pristine videos of DFD,
some examples are in Fig. 2. Our approach on these videos
achieves an accuracy of 85.6%, and an AUC of 0.94 which
further underlines the generalization of our method with re-
spect to a new type of manipulation.

4. Robustness to different contexts

We made additional experiments to understand that for
our method it is not necessary that the reference videos
are similar to the manipulated ones in terms of environ-
ment, lighting, or distance from the subject. To this end,
we show results in Fig. 3 obtained for the DFD FR and
DFD FS datasets, where information about the video con-
text (kitchen, podium, outside, talking, meeting, etc.) is
available. While the reference videos and the under-test
videos differ, our method shows robust performance. Re-
sults seem only affected by the variety of poses and ex-
pressions present in the reference videos (the last reference
video in the table contains the most variety in motion, thus
yielding better results).
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Figure 2: Aligned examples of created FOMM videos. From top
to bottom: source videos, target sequences, and manipulations cre-
ated using First-Order Motion Model [11].
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0.845 / 0.973 0.781 / 0.956 0.831 / 0.930 0.786 / 0.894 0.995 / 0.999

0.874 / 0.924 0.729 / 0.975 0.811 / 0.913 0.793 / 0.955 0.996 / 0.997

0.868 / 0.897 0.743 / 0.908 0.886 / 0.812 0.863 / 0.889 0.838 / 1.000

Figure 3: Average performance in terms of AUC evaluated on
28 actors of DFD FR and DFD FS datasets when test videos
are in different contexts with respect to reference videos. Test
videos: kitchen, podium-speech, outside laughing talking. Ref-
erence videos: angry talking, talking against wall, outside happy
hugging, outside surprised, serious meeting.

5. Visualization of the embedded vectors
In this section, we include scatter plots that show the 2D

orthogonal projection of the extracted temporal patterns. In
particular, in Fig. 5 we show the scatter plots of embed-
ded vectors extracted from 4 seconds long video snippets
relative to two actors for the DFD dataset by using Linear
Discriminant Analysis (LDA) and selecting the 2-D orthog-
onal projection that maximize the separations between the
real videos of two actors and between real videos and fake
ones. We can observe that in the embedding space the real
videos relative to different actors are perfectly separated.
Moreover, also the manipulated videos relative to an actor
are well separated from the real videos of the same actor.

6. A real case on the web
We applied ID-Reveal to videos of Nicolas Cage down-

loaded from YouTube. We tested on three real videos, four
DeepFakes videos, one imitator (a comic interpreting Nico-
las Cage) and a DeepFake applied on the imitator. We eval-



Figure 4: Distributions of squared Euclidean distances of 9 videos downloaded from YouTube with respect to a real reference video of
Nicolas Cage. From left to right: 3 real videos, 4 DeepFakes, a video from an imitator and a DeepFake driven by the imitator.
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Figure 5: Scatter plots of embedded vectors extracted from 4 sec-
onds long video snippets relative to couple of actors. We included
both face swapping (FS) and facial reenactment (FR).

uate the distributions of distance metrics that are computed
as the minimum pairwise squared Euclidean distance in the
embedding space of 4 seconds long video snippets extracted
from the pristine reference video and the video under test.
In Fig. 4, we report these distributions using a violin plot.

We can observe that the lowest distances are relative to

real videos (green). For the DeepFakes (red) all distances
are higher and, thus, can be detected as fakes. An inter-
esting case is the video related to the imitator (purple), that
presents a much lower distance since he is imitating Nicolas
Cage. A DeepFake driven by the imitator strongly reduces
the distance (pink), but is still detected by our method.
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