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In this supplementary material, we provide additional
details on the video embeddings (Sec. 1) and text embed-
dings (Sec. 2) used in the main submission. We provide
further details of Fig. 1 from the main paper (Sec. 3) as
well as details on optimization (Sec. 4), modifications to
the embedding pre-processing pipeline used in prior work
(Sec. 5) and summaries of the datasets used (Sec. 6). Fi-
nally, we include additional ablations (Sec. 7) and a more
comprehensive set of metrics for comparison with previous
work, along with qualitative results (Sec. 8).

1. Video embeddings (experts) description
In this work, we used the set of pretrained experts con-

sidered by the authors of [21]. For completeness, we sum-
marise here the manner in which these experts were ex-
tracted.

• Two form of action experts are used: Action(KN) and
Action(IG). The former is an I3D architecture trained
on Kinetics [5], which produces 1024-dimensional
embeddings from frame clips extracted at 25fps and
center cropped to 224 pixels. The Action(IG) model is
a 34-layer R(2+1)D model [38] that has ben trained on
IG-65m [12]: it operates on frames extracted at 30 fps
in clips of 8 at 112 × 112 pixel resolution.

• Two forms of object experts are used, named Obj(IN)
and Obj(IG). They are produced from frame-level em-
beddings extracted at 25fps. The Obj(IN) model con-
sists of an SENet-154 backbone [15] which has been
trained on ImageNet for image classification. Obj(IG)
is formed from a ResNext-101 [43] extractor which
was trained on Instagram data that was weakly labelled
with hashtags [24]. For both models, frames are re-
sized to 224×224 pixels.

• The face expert uses a ResNet50 [13] that has been
trained for task of face classification on the VGGFace2
dataset [4], producing a 512-dimensional embedding
for each detected face following detection.

• The audio expert is produced using the VGGish model,
trained for audio classification on the YouTube-8m
dataset and described by [14].

• The scene expert is a 2208-dim embedding that is
extracted frames (at 25 fps) for a center crop of
224×224 pixels. The model, which is pretrained on
Places365 [49], uses a DenseNet-161 [16] architecture.

• The speech expert is produced using the Google Cloud
API (to transcribe the speech content).

• The OCR expert is a word2vec encoding [26] of text
detected in frames using [23, 35].

1.1. Experts refinement – Modifying the Kinetics
action recognition model

Apart from dropping the OCR and face experts as de-
scribed in the main paper, one small modification we pro-
pose to the expert selection made by [21] is to replace the
Action(IG) from an I3D model [5] to an R2P1D model [38]
(matching the architecture Action(IG)) which has also been
pretrained on IG-65m [12] and then finetuned on the Kinet-
ics dataset [5].

2. Text embeddings description
We use several text embeddings. In addition to the Sec.

3 from the main paper, further technical details about each
of them are given below:

• mt grovle [2] is a “vision-sensitive” language embed-
ding which is adapted from w2v using WordNet and
an original vision-language graph built from Visual
Genome [19]. The size of the final pre-trained embed-
ding is 300.

• OpenAI-GPT [32] is a pre-trained text embedding
which uses transformers [39] and language modeling
on a large corpus (the Toronto Book Corpus) (the final
model has 110M params). The size of the final pre-
trained embedding is 768.



• RoBERTa [22] is a BERT-based embedding [8]. The
model is trained longer with bigger batch size on more
data, having 125M params. The size of the final pre-
trained embedding is 768.

• ALBERT [20] is a lightweight modification to
BERT [8] which overcomes some memory limitations,
having 11M params. The size of the final pre-trained
embedding is 768.

• GPT2-large [33] is a transformer-based [39] model
trained on even more data (40 Gb of text) without any
supervision, having 774M params. The size of the final
pre-trained embedding is 1280.

• GPT2-xl [33] is similar to GPT2-large, but has more
parameters (1558M params). The size of the final pre-
trained embedding is 1600.

• W2V [26] is one of the most popular text embeddings
used in vision tasks. It uses a neural network model to
learn word representations. The size of the final pre-
trained embedding is 300.

3. Further Details for Fig. 1

In Fig.1 from the main paper we highlight that the gain
for a model that uses multiple text embeddings (last bar)
is comparable with the gain of a model that uses multi-
ple video modalities (middle bar), having as comparison a
model that uses only one video modality (first bar). The first
bar represents the CE [21] model trained with one video em-
bedding, namely Obj(IG) (the performance of the model is
19.8±0.1 in geometric mean of R1-R5-R10). The second
bar represents a CE model using 7 video modalities both
for inference and training (the performance of the model is
24.4±0.1 in geometric mean of R1-R5-R10). In the third
and final bar of the chart we present the performance of
using three different text embeddings with TEACHTEXT at
training, while using only one text embedding at inference
time (the performance of the model is 30.4±0.0 in geometric
mean of R1-R5-R10). All the numbers are presented after
the modification of the pre-processing pipeline (please see
Sec. 5 for further details). All the experts used by CE [21]
are described in Sec.1.

4. Optimization setup

CE+ models are trained in Pytorch [30] using the Adam
optimizer [17]. We use a learning rate of 0.001 and weight
decay of 1E-5. When using a base architecture different
to the proposed CE+, we use the same hyper-parameters as
in the public codebase for the underlying method (CE1 and

1https://shorturl.at/ksxIS

MMT2). For MoEE, we use the re-implementation provided
by the authors of the CE method [21].

5. Modification to pre-processing pipeline
During our preliminary analysis, we found out that some

pretrained expert models produce embeddings that are fairly
sensitive to jpeg compression artifacts. To address this, we
re-extracted features from video frames densely extracted
with minimal jpeg compression (corresponding to the use
of ffmpeg [36] and the -qscale:v 2 flag). In order to
be fair in our comparisons, we apply this corrections ev-
erywhere. Due to this factor, we re-train MoEE [25] and
CE [21] and report higher numbers.

6. Dataset details
To provide an extensive comparison we test our approach

on seven video datasets that have been explored in recent
works as benchmarks for the task of text-video retrieval.
Next, we give details about all the datasets used.

MSRVTT [44] contains 10k videos, each having 20 cap-
tions. In order to test the retrieval performance, we report
results on the official split which contains 2990 videos for
the test split and 497 for validation, following the setup
used in [21]. We perform most of our ablations on this
split. To enable comparison with as many other methods
as possible, we also report results on the 1k-A split as used
in [11, 21, 31]. For this split, we report the performance af-
ter training 100 epochs. The split contains 1000 video can-
didates for testing and 9000 for training. We use the same
candidates as defined in [21] which are used by all the other
works [11, 31, 46], using each of the 20 captions associated
to each video independently during evaluation and averag-
ing performance across them.

MSVD [6] contains 80k English descriptions for a total
of 1970 videos. We use the standard split of 1200 (train-
ing), 100 (validation) and 670 (testing) as used in other
works [21, 40, 45]. The videos from MSVD do not have
audio streams.

DiDeMo [1] contains 10464 videos sourced from a
large-scale creative commons collection [37] and features
moments of unedited, diverse content (concerts, sports, pets
etc.). The dataset comprises 3-5 pairs of descriptions per
video. We adopt the paragraph-video retrieval protocols
used by [21, 47] and use splits corresponding to 8392 train,
1065 validation and 1004 test videos.

LSMDC [34] contains 118081 short video clips ex-
tracted from 202 movies. Each clip is described by a cap-
tion that is either extracted from the movie script or from
transcribed DVS (descriptive video services) for the visu-
ally impaired. There are 7408 clips in the validation set and
the testing is performed on 1000 videos from movies that
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Figure 1.(a) Batch size variation.We vary the batch size for the
MSR-VTT dataset to see how this affects the performance. We
observe that batch size in�uences performance. The underlying
architecture used for this experiment is CE+.(b) Similarity ma-
trix aggregation. We present a comparison of different similarity
matrix aggregation:min, maxandaverage. As can be seen, the
average aggregation has the best results (both when evaluating the
teacher standalone or in conjunction with our TEACHTEXT algo-
rithm).

are disjoint from the training and val sets as described in
the Large Scale Movie Description Challenge (LSMDC)3.

ActivityNet [3] contains 20k videos extracted from
YouTube and has around 100K descriptive sentences. We
follow the same paragraph-video retrieval setup as used in
prior works [21, 47] and report results on theval1 split.
So, we use 10009 videos for training and 4917 videos for
testing.

VaTeX [42] contains 34911 videos with multilingual
captions (Chinese and English). There are 10 captions per
video for each language. We follow the same protocol as
in [7, 31] and split the validation set equally (1500 valida-
tion and 1500 testing videos). In this work, we only use the
English annotations.

QuerYD [28] contains 1815 videos in the training split
and 388 and 390 for validation and testing. The videos
are sourced from YouTube and cover a diverse range of vi-
sual content. The dataset contains 31441 descriptions, from
which 13019 are precisely localized in the video content
(having start time and end time annotations) and the other
18422 are coarsely localized. For this work, we do not use
the localization annotations and report results for the of�cial
splits.

7. Ablations

In this section, we present additional ablations.

7.1. Batch size variation

In Fig. 1a we vary the batch size for the MSR-VTT
dataset in order to see how the performance is affected. As
can be seen, we obtain the best value using the same batch

3https://shorturl.at/cdrI6

Figure 2.(a) Rank variation for denoising. The denoising in-
volves dropping captions that are assigned a low ranking by the
teacher for the training set. In this experiment, we vary the rank
below which we drop sentences. Please note that for a rank of 5
(on the training set) the amount of dropped sentences is approxi-
mately 46%. Note that MSR-VTT has 20 captions per video, so
after applying this �lter we keep on average 10 captions per video.
(b) Denoising.We present the effect of denoising on retrieval per-
formance on MSVD. Some of the captions available in datasets
with multiple captions per video may be noisy and actively harm
the training process. We estimate the degree of noise present in a
caption by looking at the teacher rank and drop the caption if nec-
essary. We observe the effectiveness of denoising when applied in
isolation (CE+ vs CE+ Denoise) and in conjunction with the full
TEACHTEXT method. The experiment is presented for dropping
sentences that rank higher than rank 100.

size as for the method without applying TEACHTEXT algo-
rithm (64 in this case).

7.2. Similarity matrix aggregation study

In Fig. 1b we present several similarity matrix aggrega-
tion possibilities:min, maxandaverage. We observe that
using the mean of the similarity matrices is more effective.
Because of this, we use the mean as the �nal aggregation
technique in our TEACHTEXT algorithm.

7.3. Denoising

In Fig. 2a we vary the threshold used to �lter out sen-
tences from the training set. As can be seen, this denoising
method is effective and it can provide a signi�cant gain in
performance. In this experiment we have found out that the
best threshold for MSRVTT is rank 40. Additionally, we
present denoising results in Fig. 2b for the MSVD dataset
using the 100 threshold. This method turns out to be effec-
tive in reducing noise for retrieval datasets. Denoising is
not use in any other ablation studies. The �nal results when
comparing with other state of the art methods are presented
using denoising on MSRVTT and MSVD datasets.

7.4. Distillation setup

As stated in the main paper, the distillation setup admits
a number of variants. In addition to the methods presented
in Fig. 6b from the main paper, in Fig. 3a we present sev-
eral additional comparisons. More exactly, we test our ap-
proach against a more classical distillation setup where we
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Figure 3.(a) Distillation type. The �rst bar represents the student
performance without distillation (CE+). In addition to the meth-
ods presented in the main paper, here we test other distillation ap-
proaches:Embd regresswhich is a classical approach where the
query and video joint embeddings are directly regressed based on
the embeddings given by the teacher,Relational anglewhere we
apply the angle relationships as introduced by [29]. In addition,
we present results of our method in a self-learning setup where the
teacher is the student from a previous run (Self learn). The last bar
represent the performance of the TEACHTEXT approach.(b) Loss
study. In this picture, we show how various distillation losses (L1,
L2, Huber) affect the performance.

directly regress the embeddings given by the teacher (Embd
regress). This setup does not follow the idea of relational
distillation. Additionally, we also apply the angle distilla-
tion as introduced by [29] (Relational angle) where we use
exactly the loss as in the public code4. Please note that the
drop in performance as opposed to the student without dis-
tillation can be explained by some technical challenges that
we encountered in order to make the angle loss compatible
with the ranking loss used for this task. Last but not least,
we also show that a small improvement can be obtained by
using a self learning technique, where the teacher has the
exact same architecture and inputs as the student.

7.5. Loss study

In the main paper, we follow recent literature [29] and
use the Huber loss for distillation. However, we wanted to
see how various losses affect the performance. We test with
L1 and L2 losses. As can be seen in Fig. 3b, the Huber loss
performs better than L1 loss and a bit better than L2.

7.6. Mixture of architectures

Our TEACHTEXT assumes that the only difference be-
tween the teacher and the student is the used pre-trained
text embedding fed to the model. However, our method
is not limited to this constraint. In this section, we show
how having multiple teachers, that now have a different un-
derlying architecture affect the performance of our method.
Please note that in all other ablations, the architecture is
shared between student and teacher. This is the only ex-
ception. Our preliminary results shown in Fig. 4 suggest

4https://github.com/lenscloth/RKD

Figure 4.Mixture of architectures. We perform some prelimi-
nary experiments to see if the method may bene�t from learning
from teachers that do not share the same architecture. The x axis
corresponds to the models which are used as teachers. In cases
labeled with3 text each, we used three different variations of each
architecture as teachers, accounting for a total number ofno. meth-
ods * 3 teachers. As can be seen, the results suggest that there is
no clear bene�t in using multiple architectures as teachers.

Figure 5.(a) Amount of training data vs performance. As it
can be seen, with the increase of training data, the improvement
brought by TEACHTEXT increases.(b) Performance vs teacher
type. We study the in�uence of teachers with different text em-
beddings at input: w2v and gpt2-xl. The �rst point represents
the performance of the student without using TEACHTEXT. We
observe a boost in performance independent of the nature of the
teacher.

that there isn't much improvement that may be achieved by
using a mixture of architectures as teachers. This is some-
how expected, since these methods usually share the same
video modalities so there isn't much additional information
that may be captured by the combination of multiple archi-
tectures. However, we expect to get a further boost if we
diversify the set of used modalities.

7.7. Architecture extension

In addition to the main paper, we also introduce a new
CE-L base architecture. This is similar to the CE [21] and
CE+, but usesw2v as the text embedding. In this way,
the number of parameters are greatly reduced, making this
the most lightweight architecture in terms of number of pa-
rameters that we can create. In Tab. 1, you can see that
our method TEACHTEXT is effective even when using this
lightweight architecture. This architecture also has the low-
est numbers of parameters when compared to other state of
the art methods as can be seen in Tab.2,3,4,5,6,7,8,9.



Model
MSRVTT MSRVTT 1k-A MSVD DiDeMo LSMDC ActivityNet

Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT Base TEACHTEXT

MoEE 24:4� 0:1 25:8� 0:1 41:6� 0:4 43:4� 0:6 41:8� 0:3 43:2� 0:5 33:2� 1:4 40:2� 0:7 23:8� 0:4 26:0� 0:5 40:1� 0:3 45:2� 0:1

CE 24:4� 0:1 25:9� 0:1 42:0� 0:8 43:8� 0:3 42:3� 0:6 42:6� 0:4 34:2� 0:4 39:5� 0:5 23:7� 0:3 25:5� 0:5 40:4� 0:3 45:0� 0:6

MMT - - 44:7� 0:4 45:6� 0:7 - - - - 24:6� 0:7 25:9� 0:6 44:0� 0:4 47:9� 0:4

CE+ 29:2� 0:2 30:4� 0:0 50:3� 0:2 50:9� 0:4 46:5� 1:0 46:6� 0:5 35:8� 0:4 40:4� 0:4 28:1� 0:3 30:7� 0:3 39:7� 0:0 46:3� 0:2

CE-L 25:5� 0:1 26:9� 0:1 45:7� 0:2 46:5� 0:8 41:3� 0:5 42:6� 0:7 36:4� 0:5 41:5� 0:4 24:1� 0:2 25:9� 0:3 39:6� 0:5 45:7� 0:2

Table 1.Method generality. Retrieval performance on various datasets when applying TEACHTEXT on top of different base models. In
addition to the main paper, we present results on the CE-L architecture which has a signi�cant drop in the number of used parameters as
compared to the other models. We present in bold cases where TEACHTEXT brings an improvement over the base architecture. As can be
seen, our method is effective and brings a consistent boost independent of the base architecture.

Figure 6.Share of samples correctly retrieved samples in terms
of R1 when using TEACH TEXT on the MSR-VTT test set. In
sub-�g (a) we show the case where we learn from 3 teachers, while
in sub-�g (b) you can �nd the single teacher case. We can see that
the model with TEACHTEXT, preserves most of the knowledge
from the student without TEACHTEXT, but also acquires new in-
formation from the teacher (yellow area). Best viewed in color.

7.8. Model complexity

Changes in the pretrained text embedding strongly af-
fect the number of parameters. Because of this factor, us-
ing more text embeddings at test time may strongly affect
the total number of learnable parameters available to the
model (in addition to adding the requirement to extract addi-
tional text embeddings during inference). While the simple
'Mean' aggregation from Fig.5b in the main paper, does not
change the number of parameters, the 'Concat' aggregation
adds a signi�cant quantity (approx 240M learnable param-
eters, yielding total model sizes of 503.98M vs 262.73M
for CE+). The proposed TEACHTEXT approach leaves the
number of parameters untouched.

Since changing the text embedding to CE+ results in an
increase in number of learnable parameters, we also study a
CE-L architecture as a lightweight alternative in this Suppl.
Mat. (described in Sec. 7.7), which demonstrates that the
gain from the proposed TEACHTEXT approach is not lim-
ited to models with many learnable parameters. Please
check Tab.2,3,4,5,6,7,8,9 for the exact number of params
for every used architecture.

7.9. Amount of training data vs performance.

We next study how training data quantity in�uences the
proposed method. In Fig. 5a we observe that by using the

TEACHTEXT with more and more data, the performance
gap increases, suggesting that its bene�t may prove to be
useful even in larger scale dataset scenarios.

7.10. Teacher study

In Fig. 5b, we study how each embedding affects the �-
nal performance. We observe that even though the model
ingesting w2v embeddings has a signi�cant lower perfor-
mance than the student model without using TEACHTEXT,
there is a signi�cant gain when learning from the teacher
which uses w2v. This again indicates that there is additional
information captured by using a different text embedding
which can be exploited by TEACHTEXT.

7.11. In�uence of distillation over the correctly re
trieved samples

In Fig. 6 we present the shares of correctly retrieved sam-
ples in terms of R1 on the test set of the MSR-VTT dataset
for the student with and without TEACHTEXT and for the
teacher. In Fig. 6a we present results when we learn from
the three teachers and in Fig. 6b we considered the case
when we learn only from one teacher (namely w2v). There
is a signi�cant share of correctly retrieved sample between
the student using TEACHTEXT and the teacher.

8. Comparison to prior work

In Tab.2,3,4,5,6,7,8,9 we make an extensive comparison
of our method with other methods from the literature. In
addition to the numbers reported in the main paper, we also
report results for thev2t task. Moreover, we present the
number of parameters of each method where available. As
can be seen, our TEACHTEXT algorithm brings a clear im-
provement and the total number of parameters remains the
same as for the base architecture. In addition to the main pa-
per, we also introduce a new CE-L base architecture. This
is similar to the CE [21] and CE+, but usesw2v as text em-
bedding. In this way, the number of parameters is greatly
reduced. As can be seen from the tables, this lightweight
architecture combined with our TEACHTEXT algorithm has
very good results showcasing the effectiveness of TEACH-
TEXT across different parameter regimes. Moreover, some
qualitative results can be seen in Fig.7.




