
Supplementary Materials:
LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving

Alexander Cui *,1,2, Sergio Casas ∗,1,2, Abbas Sadat ∗,1, Renjie Liao 3, Raquel Urtasun1,2

†† Waabi1, University of Toronto2, Google Brain3

{acui, sergio, asadat, urtasun}@waabi.ai, rjliao@google.com

In this supplementary materials, we first describe additional implementation details, then we discuss additional evaluation
details and results, and finally showcase additional qualitative results. The supplementary video contains a narrated overview
of the method and longer duration rollouts of our model driving in closed-loop simulation.

1. Implementation Details
In this section, we cover implementation details about the submodules of our end-to-end driving model as well as training.

1.1. Joint Perception and Motion Forecasting Details

Here, we discuss the implementation details for our scene-consistent join perception and motion forecasting model from
sensor data.

Data Input Parameterization: The preprocessing of our LiDAR point cloud input to the model follows in the same manner
as [4]. Primarily, we use a Bird’s Eye View (BEV) of a voxelized 3D LiDAR point cloud, with the height and time dimensions
being raveled into the channel dimension. Our model does not use tracks as input, so motion information is accounted for by
including past LiDAR sweeps into the input. We project past LiDAR sweeps into the coordinate frame of the SDV’s current
LiDAR sweep, and concatenate them in the channel dimension. Additionally, our high-definition maps are represented as
a stack of rasterized images, as described in [4]. These maps encode elements of the road such as intersections, lanes and
roads, with different elements encoded in different channels.

Shared Perception Backbone: To extract features for object detection and motion forecasting, we use a backbone network
as described in [3], which was adapted from [14]. We separately process the LiDAR and HD maps in two separate sets
of convolutional layers, concatenate those intermediate features channel-wise (as they use the same spatial resolution and
coordinate system), and fuse them with a convolutional header to get a scene-level feature map. In particular, the LiDAR
backbone is composed of 4 residual convolutional blocks with 2, 2, 3, and 6 layers respectively. These blocks use 32, 64,
128, and 256 filters and a stride of 1, 2, 2, and 2 respectively. The HD map backbone is also composed of 4 residual blocks
with 2, 2, 3, and 3 layers respectively. The HD map backbone uses 16, 32, 64, and 128 filters and a stride of 1, 2, 2, and 2
respectively. For both backbones, the output of each residual block is concatenated to create a final multi-resolution feature
map, as detailed in [14]. These features maps are down-sampled 4x relative to the input. Finally, we use a header network
with 4 convolutional layers and 256 filters per layer to fuse the concatenated features. GroupNorm [13] is used because of
our small batch size (number of frames) per GPU, which we adopt due to GPU memory constraints. The final feature map is
used for the detection and motion forecasting networks. Note that the backbone network and object detector architecture is
shared across all models including the baselines to make the comparison more fair and direct.

Object Detection Header: To detect the actors in the scene, we input the feature map from the backbone into one convo-
lution layer to predict a confidence score and another convolution layer to predict a bounding box for each anchor location,
following the parameterization described in [14]. Next, non-maximal suppression (NMS) with an IoU of 0.1 is used to filter

*Denotes equal contribution
†This work was done by all authors while at Uber ATG

overlapping detections and low probability detections are filtered by a threshold corresponding to the maximum F1 score
across the Precision-Recall curve, to arrive at a final set of actor bounding boxes.

Actor Feature Extraction: Finally, in order to obtain local actor contexts xlocaln , we use rotated ROI Align [7] and extract
a crop of the feature map of a fixed size around each detected actor, which is rotated to align with the actor’s centroid and
orientation. The cropped region spans 10m to the back, 70m to the front, and 40m to each side of the actor, and has dimension
40 x 40 x 256. We apply an actor CNN (a 4-layer convolutional network with heavy downsampling) to each feature map to
get a 512-dimensional feature vector xlocaln for every actor. In order to incorporate global information about the actor’s pose
in the context of the whole scene, we add the BEV centroid and rotation relative to the SDV xglobaln = {cx,n, cy,n, an} as
features, and concatenate these two feature vectors channel wise to get the final actor context xn = [xlocaln , xglobaln] ∈ RD

Scene Interaction Module: For the basis of our motion forecasting model, we use a ”scene interaction module” (SIM)
graph neural network as described in [3] and inspired by [2]. SIM is used in the Prior, Encoder, Decoder, Diverse Sampling
networks as well as the Scenario scorer. Given a graph of actor nodes with embeddings, the SIM will pass in the hidden states
of the two actor nodes in a given edge, in addition to the projected distance between their two bounding boxes, to a 3-layer
MLP. This computes an activation for each edge in the graph, that goes through feature-wise max-pooling and a GRU cell
to compute a new hidden state for each node. Finally, a 2-layer MLP is applied to each node to get their final outputs. All
our SIMs use a hidden state size of 64. We run two SIMs in parallel for each of our Prior and Encoder networks to compute
a latent µ and σ vector of length 64 for each actor. These are sampled in a gaussian parameterization to get zn vectors of
length 64 for each agent. These zn vectors and the xn feature vector is then concatenated for each actor for a total length of
576. This set of actor vectors is then fed into a decoder SIM that computes a length 20 output ((x, y) waypoints over 10 time
steps).

1.2. Planning-Centric Diverse Sampler Details

Here, we will describe the implementation details of our diverse sampler network.

Network Architecture: To train the diverse sampler networkMη , we first train the scene-consistent joint perception and
motion forecasting model described above, and freeze the detection backbone, actor feature extractors and decoder network.
We replace the Encoder and Prior networks with our diverse sampler. This model consists of two SIMs, one for the A vector,
and another for the B vector. These SIMs have identical architecture - they take as input the graph of actor feature vectors
of length 512, and use hidden states of length 64. Each model jointly outputs K = 15 samples of 64-dimensional vectors
for each agent, and does this by outputting a K ∗ 64 length vector for each agent. As described in section 3.2, these vectors
parameterize the latent mapping that is used to sample Z, a set of K latent vectors. These are then decoded into K scene
predictions, which is done in parallel by batching the K latent samples as input to the decoder.

As mentioned in the description of the DLow baseline, we stray from the implementation described in [16] by predicting
only the diagonals of the A matrix instead of a full matrix, because the full matrix would not fit in memory given our high
dimensionality. We have higher dimensionality because our scene latent vectors represent a sample of the joint distribution
of all actors, as opposed to the marginal distribution of a single actor.

Hyperparameters: For learning, we weight the energies in our model as follows: Er has a coefficient of 0.02, Ep has a
coefficient of 0.01, Ed has a coefficient of 10, and σd is equal to 10000.

1.3. Scenario Probability Estimation Details

The scenario probability estimation network is parameterized as another SIM with a hidden dimension of 128. This SIM
takes as input the K predicted scenarios Y. To do so, the n-th node state in the graph is initialized to the K trajectories of
actor n, Yn ∈ R2TK . After 1 round of message passing in the SIM, we take all the updated node states and average pool
them over the node (or actor) dimension, thus obtaining a single feature vector of the hidden dimension (128). Then, a MLP
maps these features into the K scores, one for each future.

1.4. Contingency Planner Details

In this section we provide details of the action and trajectory sampling, followed by the description of the planner cost
functions.

1.4.1 Action and trajectory sampling

Since the motion-paths representing the lane centers are strong priors for potential SDV paths, we perform the action and
trajectory sampling in Frenet Frame of the goal motion-path, given by the input route. The action and its corresponding set
of long-term trajectories are represented by lateral and longitudinal trajectories relative to the goal motion-path [12]. The
sampling is achieved by first generating a lateral profile. We use two quintic polynomials that are generated by the initial
SDV state in Frenet frame, and sampled lateral offsets for mid/end-conditions as in [10]. Next, to generate the actions, we
sample longitudinal profiles in form of quartic polynomials which, combined with the generated lateral trajectory, yields a
bicycle model trajectory representation. Similarly, in order to sample contingent plans, we generate long-term longitudinal
trajectories in form of two quartic polynomials. These polynomials are conditioned on the end longitudinal-state of the
corresponding action, and sampled mid/end-conditions [10]. Note that we use 1 second horizon for the actions and 4 seconds
for the trajectories.

1.4.2 Costing

The planner cost function includes subcosts that encode different aspects of the sample actions and trajectories, including
safety, traffic-rules, and comfort.

Safety: Given the predicted trajectories of the actors, the collision subcost penalizes a sample SDV trajectory if the SDV
polygon is overlapping with the polygon of the other actors. This collision cost is computed separately for each class of
actors. Furthermore, a trajectory is penalized if it has high velocity close to other actors. Another subcost related to safety is
the headway subcost, in which the SDV trajectory is penalized if it is violating a safety distance to the leading vehicle. This
safety distance is determined by the velocity of both SDV and the lead vehicle such that the SDV can stop with a comfortable
acceleration profile, in case the lead vehicle suddenly stops with hard breaking.

Traffic rules: The SDV is required to stay on its lane and close to the centerline. Therefore, trajectories that are far from the
lane-motion paths are penalized proportional to the offset. Similarly, if the SDV polygon goes off of the lane, the trajectory
is penalized. In order to prevent the SDV from violating red-lights, trajectories that enter red-light intersections are penalized
proportional to the violation distance. We use similar costing for junctions with stop-signs. Furthermore, trajectories that go
above the speed-limit of the road are penalized proportional to the violation margin.

Progress and comfort: In order to promote trajectory samples that progress in the route, we use the traveled longitudinal
distance as a reward (negative cost). Additionally, trajectories that violate the kinematic and dynamic constraints of the
vehicle are penalized, including curvature, acceleration, deceleration, and lateral acceleration. Additionally, high jerk and
acceleration and decelerations are penalized by cost functions to promote comfortable trajectories.

1.5. Optimization Details

When training the scene-consistent motion forecaster, we used the same optimization settings as in [3], where we use
the Adam optimizer [8] with a learning rate of 1.25e-5, with a cyclical annealing schedule for one of our coefficients. This
training ran for 50,000 iterations of batch size 4 on 16 Nvidia RTX 5000 GPUs. When training the diverse sampler, we use
the same learning rate, without cyclical annealing schedule, training this model for 40,000 iterations of batch size 1 (due to
memory constraints) on 8 Nvidia RTX 5000 GPUs.

2. Additional Evaluation Details
2.1. Operating point for evaluation

We evaluate motion forecasting on true positive detections. To find a fair operating point of the object detectors for all
models in the motion forecasting task, we follow [2, 3] and find the detection threshold corresponding to a common recall
point. In particular, we evaluate motion forecasting at 90% recall for vehicles, 60% for bicyclists and 70% for pedestrians.

For the downstream task evaluation of motion planning, we find the maximum F1 score point in the Precision-Recall curve
for each baseline, and operate the detector at that point to minimize false positive and false negatives.

2.2. Formal sub-system level metrics definitions

The metrics used at the sub-system level in our open-loop evaluation are defined below. The minimum scene average
displacement error (minSADE) measures how well we recall the ground-truth trajectory by measuring the distance between
the ground-truth scene and the closest predicted scene. The mean scene average displacement error (meanSADE) measures
the precision of the predicted distribution at the scene-level as proposed in [3] by measuring how different the predicted
scenes are on average with the ground-truth. In our formulation, meanSADE takes into account the scenario probabilities in
computing the weighted sum of SADEs.

minSADE = min
k∈1...K

1

NT

N∑
n=1

T∑
t=1

||ytn,GT − ytn,k||2, (1)

meanSADE =
1

NT

K∑
k=1

pψ(Yk|X)

N∑
n=1

T∑
t=1

||ytn,GT − ytn,k||2, (2)

where N is the number of actors, T is the number of timesteps, K is the number of scene samples for a given scenario,
pψ(Yk|X) is the scenario probability score for scene sample k, yn,k is the predicted trajectory for actor n in the scene sample
k, yn,GT is the ground truth trajectory for actor n.

We focused on measuring motion forecasting diversity that impacts the safety of the SDV, by evaluating how the diversity
of these predictions impact the subsequent contingent plans. To do this, we measure the pairwise plan average self-distance
(meanPlanASD), i.e., the average distance between the contingent plans for 2 distinct futures. Additionally, we also compute
the scene average self-distance (meanSASD), which computes the average pairwise distance among scene samples, and the
minimum scene self-distance (minSASD), which computes the minimum pairwise distance for each scene sample, as ways to
measure general diversity as proposed by [15, 16]. In our implementation, meanSASD does not take into account scenario
probabilities of each predicted future, as it aims to measure their diversity.

meanPlanASD =
1

K

K∑
i=1

K∑
j 6=i

`2(τi, τj) (3)

where τi = τ(Yi) is the corresponding planned contingent trajectory to the scene-level future Yi.

meanSASD =
1

K

K∑
i=1

K∑
j 6=i

`2(Yi, Yj) (4)

minSASD =

K∑
i=1

min
k∈1...K

`2(Yi, Yk) (5)

where Yi is the tensor of coordinates of the future trajectories in scene i, with dimensions (N,K, T, 2).
2.3. Open-sourced datasets and simulators

We chose not to run our metrics on nuScenes [1] and Argoverse [6] as they do not have a closed-loop simulator, and
open-loop metrics in general do not reflect the quality of real-world (closed-loop) driving due to compounding errors and
causal confusion. Moreover, the open-loop planning metrics used in previous works cannot be directly applied to our multiple
contingency plans.
2.4. Baselines

All of these baselines share the shared perception backbone, object detection, and actor feature extraction models as
described above. These baselines are divided into actor-independent models that either output explicit marginal likelihoods
(i.e. MultiPath [5]) or output sampled trajectories such as our CVAE[11], DPP [15] and DLow [16] models, and scene-
consistent models that are autoregressive (ESP [9]) or implicit variable models (ILVM [3]).

As detailed in [3], for MultiPath, we use their mixture of trajectories parameterization instead of our encoder-decoder
architecture to predict a gaussian for each waypoint.

For the CVAE model, we replace the Encoder, Prior and Decoder SIMs with MLPs of similar dimension, but use the same
variational inference parameterization.

Prediction Planning CR(%) Progress
collision (m) Progress(m) Jerk(ms3) Lat.Acc.(ms2) Acc(ms2) Decel(ms2)

CVAE-DPP PLT 17.07 123.97 21.17 11.99 0.06 1.11 0.80
Contingency 12.80 235.21 30.12 8.83 0.16 1.03 0.54

CVAE-DLow PLT 14.63 377.07 55.18 5.22 0.15 0.84 0.54
Contingency 9.76 628.67 61.33 4.44 0.36 0.79 0.36

MultiPath PLT 12.20 394.37 48.09 12.92 0.13 1.24 0.80
Contingency 10.37 548.72 56.88 7.62 0.33 1.08 0.57

ESP PLT 11.59 464.44 53.81 6.52 0.15 0.89 0.57
Contingency 10.98 549.89 60.35 5.20 0.35 0.82 0.53

ILVM PLT 10.98 553.96 60.80 5.50 0.16 0.86 0.56
Contingency 9.15 709.60 64.90 4.40 0.38 0.77 0.52

CVAE PLT 8.54 655.22 55.93 7.22 0.15 0.96 0.62
Contingency 9.76 630.50 61.51 5.07 0.36 0.82 0.53

LookOut 7.93 790.37 62.65 4.69 0.37 0.79 0.53
Table 1. Closed loop motion planning comparison against the baselines with Contingency Planner.

For the DPP model, we use the frozen Decoder from the CVAE model. Similarly to [15], instead of predicting a µ and σ
vectors, we predict K scenes samples of latent vectors using an MLP, where each scene sample consists of a 64-dimensional
latent vector for each actor. We do this by predicting a K ∗ 64-dimensional vector for each actor, and reshaping that into K
vectors of length 64 per actor. Then, we decode each scene sample of latent vectors to get K separate scene motion forecasts
Y . We then apply the determinantal point process loss as described in [15]. To get the xi vectors, as referred to their work
(not to be confused with the LOOKOUT definition), we concatenate the trajectories in one scene over all the actors, their
(x, y) coordinates over time for each scene to get a N ∗ T ∗ 2-dimensional vector xi for each scene i, where N is the number
of actors and T is the number of future timesteps predicted. To get the zi vectors, as referred to their work (not to be confused
with the LOOKOUT definition), we concatenate the per-actor vectors in each scene to get N ∗ 64-dimensional vectors zi for
each scene i. We use these vectors to compute the Diversity Loss as described in their paper.

For the DLow model, we use the frozen Decoder from the CVAE model. Similarly to [16], we predict K scene samples of
an A and B vector for each agent using an MLP. Unlike their paper, we output an A vector representing the diagonal of the
matrix, because the full matrix would not fit in memory given our high dimensionality. These A and B are essentially used
in the same way as described in section 3.2 of our paper, except planning-based diversity and scenario probability scoring are
not used.

For our ESP model, we adapt it to our feature contexts and memory constraints as described in [3].
For our ILVM baseline, we use exactly the formulation described in [3] (where SIMs are used for the Encoder, Prior

and Decoder), except we use a fixed standard gaussian distribution as our target encoder distribution instead leaving it
unconstrained. The same is true for our CVAE model, and LOOKOUT. This is because it allows our DPP, DLow and
LOOKOUT models to more easily learn to fit and map to the distribution of the latent space, making training much more
tractable.

3. Additional Evaluation Results
Closed-loop experiments with baselines with Contingency Planner: We see in Table 1 that the contingency planner
increases the progress and decreases the acceleration and deceleration of the motion planning for all baselines. Additionally,
it increases the lateral acceleration for all baselines, possibly in order to make more active maneuvers to nudge around
obstacles. We see that the LOOKOUT still maintains the best safety and progress per collision even when the baselines are
paired with our contingency planner, and has similar values in other metrics to the other most competitive baseline, ILVM
+ Contingency Planner. This results demonstrates the necessicity of using both scene-consistent diverse predictions, and the
contingency planner.

Multi-class motion forecasting comparison in ATG4D: We can see in Table 2 that LOOKOUT’s prediction module
most accurately models the ground truth future trajectories for vehicles, with the lowest minimum and mean scene average

Category Model minSADE (m) meanSADE (m) minSASD (m) meanSASD (m)

Vehicles

MultiPath 0.929 1.314 1.175 4.628
CVAE 0.804 1.083 0.488 2.693
CVAE-DPP 1.143 4.267 3.551 19.849
CVAE-DLow 0.839 1.152 0.559 3.277
ESP 1.090 1.441 1.120 3.991
ILVM 0.770 1.061 0.455 2.534
LOOKOUT 0.765 1.022 0.704 4.078

Pedestrians

MultiPath 0.531 0.691 0.619 1.960
CVAE 0.527 0.550 0.075 0.284
CVAE-DPP 0.668 3.748 4.477 17.511
CVAE-DLow 0.552 0.556 0.018 0.102
ESP 0.547 0.637 0.750 1.424
ILVM 0.562 0.576 0.069 0.239
LOOKOUT 0.583 0.582 0.085 0.811

Bicyclists

MultiPath 0.480 0.708 0.675 2.244
CVAE 0.514 0.636 0.249 0.963
CVAE-DPP 0.553 3.890 4.476 17.797
CVAE-DLow 0.510 0.629 0.103 0.574
ESP 0.601 0.925 0.770 2.239
ILVM 0.465 0.633 0.178 0.807
LOOKOUT 0.510 0.627 0.164 0.770

Table 2. Multi-class motion forecasting results in ATG4D (K = 15 samples).

Model mAP (%) Vehicles mAP (%) Pedestrians mAP (%) Bicyclists
IoU 0.5 IoU 0.7 IoU 0.1 IoU 0.3 IoU 0.1 IoU 0.3

MultiPath 93.95 82.77 78.47 75.48 62.72 56.19
ESP 95.10 84.95 80.97 77.57 70.21 63.29
CVAE 95.76 87.98 81.48 78.67 74.31 68.76

LOOKOUT 95.80 87.99 80.66 78.32 75.18 69.48
Table 3. Multi-class detection results in ATG4D.

displacement error. This is important because vehicles make up the vast majority of actors on the road. Compared to the
baseline with the next lowest error, ILVM, we have much greater prediction diversity (61% greater meanSASD).

We can see that for pedestrians and bicyclists, our model maintains a competitive accuracy/diversity tradeoff. We leave the
problem of improving accuracy while maintaining the diversity for pedestrians and bicyclists while not regressing in vehicles
for future work.

Detection comparison in ATG4D: We see in Table 3 that our detector’s mAP on vehicles is 0.958 and is the highest among
competitors for vehicles and bicyclists, and is comparable to the best performing baseline on pedestrians. The detection
performance amongst most models is similar since they all share the perception backbone network, as explained in Section
2.3. The difference stems from the differences in prediction loss in the joint perception and prediction training (stage 1 in
LOOKOUT).

Planning vs. diversity tradeoffs when using contingency planner: We see in Fig 1 that LOOKOUT offers the safest
plans in closed-loop experiments, even when we pair the baselines with the contingency planner. We achieve a strong
tradeoff between safety and meanPlanASD, with a 3% absolute improvement in safe-rate (or equivalently, 24% lower rate
of collisions) than the only baseline that has greater planning diversity, MultiPath. This shows that our model is generating
diverse predictions that are relevant to the SDV and accurately anticipate possible safety-critical scenarios the SDV should
prepare for.

In addition, we see that our SDV demonstrates a competitive tradeoff between progress and planning diversity in Fig 1.

Figure 1. Planning quality as a function of diversity when we pair the baseline prediction models with our contingency planner.

Qualitatively, we see our motion planning not make as much progress compared to the ILVM baseline, in order to slow down
in situations of uncertainty to avoid collisions. On the other hand, having too many unrealistic, varied trajectories and a lack
of realistic trajectories can result in a low rate of progress (such as in MultiPath) because the SDV struggles to avoid all the
predicted trajectories of other actors.

4. Additional Visualizations
Contingency planner visualizations: Fig 2 contains visualizations for interactive situations that showcase why we need
contingency planning.

In Scenario 1, the SDV must decide to go before or after the left turning vehicle at the intersection, which plans to merge
into the SDV lane. Since the intersection is crowded and we do not know the exact moment the other vehicle is going to
go through, our predictions are diverse in terms of the other actor’s speed, planning corresponding safe plans for the distinct
futures while keeping a comfortable velocity.

Scenarios 2 and 6 showcase scenarios where the vehicle at the other side of the junction is planning to perform an unpro-
tected left-turn, and the model are not sure whether it will yield to the SDV or not. The SDV plans a cautious immediate
action that will allow it to decide to either go or brake when the action from the other actor is more clear.

Scenario 3 shows that when we are following an actor in the right-most lane, we plan slower trajectories in case we need
to brake if the actor decides to turn right, and thus slow down.

In Scenario 4, the SDV is taking an unprotected left turn in high moving traffic and considers multiple speed profiles to
account for the multiple futures of the incoming traffic.

Finally, Scenario 5 showcases a narrow passage due to parked vehicles, where another actor might either aggressively
nudge the parked cars or gently progress. The SDV does not immediately hard-brake because it can plan a safe immediate
action that is comfortable and allows it to postpone the decision to whenever more evidence is available or it becomes unsafe
to progress.

Motion forecasting Sample Diversity and Quality: From Scenario 1 in Fig 3, we can see that LOOKOUT shows a diverse
range of modalities, and most strongly predicts the forwards acceleration of the SDV (located in the center of the image, next
to the curb).

From Scenario 2 in Fig 3, we see that the left turning vehicle in the center and right turning vehicle about it has a wide
range of expected turn modalities. MultiPath demonstrates a wide spread of expected behaviours - however, many in the top
left enter the curb, and the left turn on the agent driving from the right is not represented. ESP does the best job in fitting the
SDV trajectory, at the cost of diversity.

From Scenario 1 in Fig 4, we can see LOOKOUT and MultiPath predict multiple modalities at both intersections, whereas
ESP and ILVM trajectories fit one mode predominantly at each intersection.

From Scenario 2 in Fig 4, we mainly see that MultiPath struggles here in making realistic predictions, with many entering
the curb. On the other hand, LOOKOUT demonstrates diversity mostly in speed and the trajectory of the bus, which is in the
path of the SDV and thus is important to model diversely.

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5 Scenario 6

Figure 2. Contingency planner qualitative results in closed-loop simulation. The green bounding box is the SDV. The immediate action
(1s) is shown in black starting from the rear axle of the SDV. The contingent trajectories planned for each possible future scenario are
shown in distinct colors.

References
[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo

Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027, 2019. 4
[2] S. Casas, C. Gulino, R. Liao, and R. Urtasun. Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from

sensor data. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020. 2, 3
[3] Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie Liao, and Raquel Urtasun. Implicit latent variable model for scene-

consistent motion forecasting. ECCV 2020, 2020. 1, 2, 3, 4, 5

Scenario 1 Scenario 2

L
O

O
K

O
U

T
M

ul
tiP

at
h

E
SP

IL
V

M

Figure 3. Motion forecasting visualizations. We blend 15 future scenarios with transparency (we assume equal probability for visu-
alization purposes). Time is encoded in the rainbow color map ranging from red (0s) to pink (5s). This can be seen as a sample-based
characterization of the per-actor marginal distributions.

[4] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intentnet: Learning to predict intention from raw sensor data. In Conference on
Robot Learning, 2018. 1

[5] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple probabilistic anchor trajectory hypothe-
ses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019. 4

[6] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon
Lucey, Deva Ramanan, and James Hays. Argoverse: 3d tracking and forecasting with rich maps. CoRR, abs/1911.02620, 2019. 4

[7] Jing Huang, Viswanath Sivakumar, Mher Mnatsakanyan, and Guan Pang. Improving rotated text detection with rotation region
proposal networks, 2018. 2

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 3
[9] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2: A reparameterized pushforward policy for diverse, precise generative

path forecasting. In Proceedings of the European Conference on Computer Vision (ECCV), pages 772–788, 2018. 4

Scenario 1 Scenario 2

L
O

O
K

O
U

T
M

ul
tiP

at
h

E
SP

IL
V

M

Figure 4. More motion forecasting visualizations

[10] Abbas Sadat, Mengye Ren, Andrei Pokrovsky, Yen-Chen Lin, Ersin Yumer, and Raquel Urtasun. Jointly learnable behavior and
trajectory planning for self-driving vehicles. IROS 2019, 2019. 3

[11] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep conditional generative models.
In Advances in neural information processing systems, pages 3483–3491, 2015. 4

[12] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Optimal trajectory generation for dynamic street scenarios in a
frenet frame. In 2010 IEEE International Conference on Robotics and Automation, pages 987–993. IEEE, 2010. 3

[13] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the ECCV (ECCV), 2018. 1
[14] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE

CVPR, 2018. 1
[15] Ye Yuan and Kris Kitani. Diverse trajectory forecasting with determinantal point processes. arXiv preprint arXiv:1907.04967, 2019.

4, 5
[16] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for diverse human motion prediction. arXiv preprint arXiv:2003.08386,

2020. 2, 4, 5

