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In this supplementary material, we provide more details
that could not be presented in the regular paper due to the
space limitation. In Section 1, we show the overall training
and testing procedure. In Section 2, we provide more de-
tails about the implementation of our method. In Section 3,
we compare our method with the state-of-the-arts on other
two real→ real UDA re-ID benchmarks. In Section 4, we
analyse the effects of the hyper-parameters.

1. Overall Training and Testing Procedure
The overall training procedure of our method is shown in

Algorithm 1, where we use XBM [14] as the memory bank
to implement our Strong Baseline method. If using XBM, it
means we implement our proposed IDM module in Strong
Baseline; If not using XBM, it means we implement the
IDM module in Naive Baseline. More details about XBM
can be seen at Section 2.3 below. Our proposed IDM mod-
ule is only used for training and is discarded for testing. In
the testing procedure, we use the L2-normalized features
after the global average pooling (GAP) layer followed by a
batch normalization (BN) layer.

2. Implementation Details
ResNet-50 [6] pretrained on ImageNet is adopted as the

backbone network. Domain-specific BNs [1] are used in
the backbone network to narrow the domain gaps. Fol-
lowing [9], we resize the image size to 256×128 and ap-
ply some common image augmentation techniques, includ-
ing random flipping, random cropping, and random erasing
[25]. We perform DBSCAN [2] clustering on the unlabeled
target data to assign pseudo labels at the beginning of each
training epoch, in a manner like the existing UDA re-ID
methods [3, 12, 5]. The mini-batch size is 128, including
64 source images of 16 identities and 64 target images of
16 pseudo identities. We totally train 50 epochs and each
epoch contains 400 iterations. The initial learning rate is set
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as 3.5 × 10−4 which will be divided by 10 at the 20th and
40th epoch respectively. The Adam optimizer with weight
decay 5× 10−4 and momentum 0.9 is adopted in our train-
ing. The loss weights µ1, µ2, µ3 are set as 0.7, 0.1, 1 respec-
tively. In the IDM module, the FC1 layer is parameterized
by W1 ∈ Rc×2c and MLP is composed of two fully con-
nected layers which are parameterized by W2 ∈ R(c/r)×c

and W3 ∈ R2×(c/r) respectively, where c is the represen-
tations’ channel number after the m-th stage and r is the
reduction ratio. If not specified, we plug the IDM module
after the stage-0 of ResNet-50 and set r as 2. The IDM
module is only used in training and will be discarded in
testing. Our method is implemented with Pytorch, and four
NVIDIA RTX 2080Ti GPUs are used for training and only
one GPU is used for testing.

2.1. Clustering on the Target Domain

As shown in Algorithm 1, we perform DBSCAN [2]
clustering on the features of all the target domain sam-
ples to assign pseudo labels for the target domain samples,
which is similar to the the existing clustering-based UDA
re-ID methods [3, 12]. Specifically, we use the the Jac-
card distance [24] as the metric in DBSCAN, where the k-
reciprocal nearest neighbor set is used to calculate the pair-
wise similarity. We set k as 30 in our experiments. In DB-
SCAN, we set the maximum distance between neighbors as
0.6 and the minimal number of neighbors for a dense point
as 4.

2.2. The structure of our IDM module

Our proposed IDM module is very easy to implement,
including a FC1 layer and a MLP (Muti-Layer Perception)
followed by a softmax function. Specifically, the FC1 layer
is a fully connected layer parameterized by W1 ∈ Rc×2c.
The MLP contains two fully connected layers which are pa-
rameterized by W2 ∈ R(c/r)×c and W3 ∈ R2×(c/r) respec-
tively. We denote c as the channel number of the feature
map at the m-th stage of ResNet-50, and denote r as the re-
duction ratio for the dimension reduction. In ResNet-50, the



Algorithm 1: The overall training procedure
Input: Source labeled dataset {(xsi , ysi )} and target

unlabeled dataset {xti};
Output: The trained backbone network f(·) and

classifier ϕ(·);
1 Initialize the backbone network f(·) with the

ImageNet-pretrained ResNet-50;
2 Initialize the XBM memory as an empty queue M ;
3 Plug our IDM module after the m-th stage of the

backbone f(·) and randomly initialize it.
4 for epoch = 1 to MaxEpochs do
5 Use the backbone f(·) to extract features {f t

i } for the
target dataset {xti};

6 Assign pseudo labels {yti} for target domain samples
{xti} by performing DBSCAN clustering on the
target features {f t

i };
7 for iter = 1 to MaxIters do
8 Sample a mini-batch of samples including n

source samples {(xsi , ysi )}ni=1 and n target
samples {(xti, yti)}ni=1;

9 Feed forward the batch into the network to obtain
the features and predictions for the source,
target, and intermediate domains: (fs, ϕs),
(f t, ϕt), and (f inter, ϕinter);

10 if using XBM then
11 Enqueue(M , {(f t, yt)}, {(fs, ys)});
12 if M is full then
13 Dequeue(M );
14 end
15 Use all entries in M for the hard negatives

mining in the triplet loss in LReID from
Eq. (9);

16 end
17 Calculate the overall training loss by Eq. (9);
18 Update f(·), ϕ(·), and our IDM module together

by back-propagating the gradients of Eq. (9);
19 end
20 end

channel number c is 64/256/512/1024/2048 after the stage-
0/1/2/3/4 respectively. In Figure 1, we evaluate the effec-
tiveness of different values on the reduction ratio r.

2.3. Implementation of XBM

Similar to many joint training UAD re-ID methods
[26, 27, 13, 8, 5, 21] that use the memory bank [18, 17, 14]
to improve the discriminability on the target domain, we
also use the memory bank to implement our Strong Base-
line method. Specifically, we use the memory bank to mine
hard negatives of both source and target domains to cal-
culate the triplet loss, similarly to XBM [14]. Following
XBM [14], the memory bank is maintained and updated as
a queue: for each mini-batch, we enqueue the features and
(pseudo) labels of samples in this current mini-batch, and

1 2 4 8 16 32
Reduction ratio r

70

75

80

Ac
cu

ra
cy

 (%
)

83.4 83.6 83.5 83.1 82.8 82.1

70.1 70.5 70.5 70.3 69.4 69.3

Rank-1
mAP

Figure 1. Performance of our method with different values of the
reduction ratio r in our IDM module. Evaluating on Market →
Duke when our IDM is plugged after the stage-0 of ResNet-50.
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Figure 2. Performance of our method with different values of the
memory ratio RM in XBM.

dequeue the entites of the earlist mini-batch if the queue
is full. For each mini-batch, we use all the entites in the
memory bank to mine hard negatives for the triplet loss [7].
The procedure of maintaining and updating the XBM can
be seen in Algorithm 1. Besides, we set the memory ra-
tio as RM = NM/(Ns + N t), where NM is the size the
memory bank and Ns (N t) is the number of all the source
(target) training samples. If not specified, we setRM as 1 in
our experiments, i.e., the size of the memory is the same as
the size of the whole training dataset (including both source
and target domains). We also evaluate the effectiveness on
different values of RM in Figure 2.

3. Additional Experimental Results

Some other real → real tasks are used to evaluate the
UDA re-ID performances in the existing UDA re-ID meth-
ods [16, 20, 19, 28, 10, 5], where they use MSMT17 [15]
as the source dataset, and use Market-1501 [22] and
DukeMTMC-reID [11, 23] as the target datasets respec-
tively. As shown in Table 1, our method can outperform the
state-of-the-arts methods on these two real→ real tasks by
a large margin. From all the results in our regular paper and
this supplementary material, our method can significantly
outperform the state-of-the-arts methods in all the existing
UDA re-ID benchmarks.



Table 1. Comparison with the state-of-the-art UDA re-ID methods on other real→ real tasks.

Methods Reference
MSMT17→Market-1501 MSMT17→ DukeMTMC-reID

mAP R1 R5 R10 mAP R1 R5 R10
CASCL [16] ICCV 2019 35.5 65.4 80.6 86.2 37.8 59.3 73.2 77.8
MAR [20] CVPR 2019 40.0 67.7 81.9 87.3 48.0 67.1 79.8 84.2
PAUL [19] CVPR 2019 40.1 68.5 82.4 87.4 53.2 72.0 82.7 86.0
DG-Net++ [28] ECCV 2020 64.6 83.1 91.5 94.3 58.2 75.2 73.6 86.9
D-MMD [10] ECCV 2020 50.8 72.8 88.1 92.3 51.6 68.8 82.6 87.1
MMT-dbscan [4] ICLR 2020 75.6 89.3 95.8 97.5 63.3 77.4 88.4 91.7
SpCL [5] NeurIPS 2020 77.5 89.7 96.1 97.6 69.3 82.9 91.0 93.0
IDM (Ours) ICCV 2021 82.1 92.4 97.5 98.4 71.9 83.6 91.5 93.4
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Figure 3. Performance of our method with different values of the
loss weight µ1.
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Figure 4. Performance of our method with different values of the
loss weight µ2.
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Figure 5. Performance of our method with different values of the
loss weight µ3.

4. Parameter Analysis
We tune the hyper-parameters on the task of Market →

Duke, and apply the tuned hyper-parameters to all the other
UDA re-ID tasks in our regular paper.

4.1. The reduction ratio r in our IDM module

In Figure 1, we evaluate the effectiveness of different
values on the reduction ratio r when we plug our IDM mod-
ule after the stage-0 of ResNet-50. When r gets larger, the
performance gets slightly lower because the larger reduc-
tion ratio will make the IDM harder to learn. From the re-
sults in Figure 1, we set r as 2 for our method in all the other
UDA re-ID tasks.

4.2. The memory ratio RM for the XBM in our
Strong Baseline.

We implement XBM [14] in our Strong Baseline, where
the memory bank is set as a queue of the size NM . We use
the memory ratio RM = NM/(Ns + N t) to control the
size of the memory bank, where Ns (N t) is the size of the
source (target) domain training dataset. We evaluate the per-
formance on Market→ Duke in Figure 2. When RM = 0,
it means we implement our method based on Naive Base-
line, i.e., “Baseline1 + Our IDM (full)” in Table 1 in our
regular paper. When RM = 1, it means we implement our
method based on Strong Baseline, i.e., “Baseline2 + Our
IDM (full)” in Table 1 in our regular paper. When the mem-
ory size gets larger, the performance will get better because
the larger memory bank can mine more effective negatives
for the target domain. However, whether we use XBM or
not, our method can outperform the baseline method by a
large margin.

4.3. The loss weight µ1

We tune the value of the loss weight µ1 in Figure 3,
where µ1 is the weight to balance the bridge loss Lϕ

bridge

in Eq. (9) in our regular paper. When µ1 = 0, it means
“Baseline2 + Our IDM w/o Lϕ

bridge”. We use this bridge
loss Lϕ

bridge to enforce on intermediate domains’ prediction
space. As shown in Figure 3, the performance gets better
when µ1 ranges from 0 to 0.7. If µ varies from 0.7 to 0.9,



the performance will get a little degradation because more
penalization on intermediate domains’ prediction space will
affect the learning of the source and target domains. Thus,
we set µ1 as 0.7 in all the other experiments in our regular
paper.

4.4. The loss weight µ2

We compare the performance of different values of the
loss weight µ2 in Figure 4. The weight µ2 is used to bal-
ance the bridge loss Lf

bridge in Eq. (9). We use Lf
bridge to

enforce on intermediate domains’ feature space to keep the
right distance between intermediate domains to the source
and target domains. When µ2 = 0, it is the same as “Base-
line2 + Our IDM w/o Lf

bridge” in Table 1 in our regular pa-
per. When µ2 gets close to 0.1, the performance gets better.
If setting a large weight value of µ2, it will bring a little per-
formance degradation because the overall loss will penalize
more on the intermediate domains’ feature space while pe-
nalize less on the source and target domains. From Figure 4,
we set µ2 as an appropriate value 0.1 to better balance the
bridge loss Lf

bridge in Eq. (9).

4.5. The loss weight µ3

In Figure 5, we evaluate the performances of our method
with different values of the loss weight µ3. We use the
weight µ3 to balance the diversity loss Ldiv in Eq. (9).
When µ = 0, it means the performance of “Baseline2 +
Our IDM w/o Ldiv” in Table 1 in our regular paper. As the
results reported in Figure 5, we set µ3 as 1.0 for the experi-
ments in all the other UDA re-ID tasks.
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