
Synchronization of Group-labelled Multi-graphs
Supplementary material

Andrea Porfiri Dal Cin1, Luca Magri1, Federica Arrigoni2, Andrea Fusiello3 and Giacomo Boracchi1
1DEIB - Politecnico di Milano (Italy) 2DISI - University of Trento (Italy) 3DPIA - University of Udine (Italy)

This document provides additional materials that were
omitted from the main manuscript due to space restrictions.
In particular, in Section 1 we detail the graph-expansion al-
gorithm presented in Section 3.2 of the main paper, while
Section 2 provides a more detailed description of the proof
of Theorem 1 in Section 3.3. Full-sized tables are reported
in Section 3.

1. Multi-graph expansion algorithm
The multi-graph expansion algorithm is an iterative

greedy procedure that turns a Σ-labeled multi-graph Γin
given in input into a simple graph Γout = (Vout, Eout, z). Al-
gorithm 1 describes the main steps. Please, refer to Defini-
tions 1 and 2 in the main paper for the notion of a multi-
graph and multi-edges, respectively. Intuitively, a multi-
edge is a collection of edges with the same source and target
nodes.

At first, in lines 1-3, we initialize the vertex set and
the edge set of the output graph to the values of the input
multi-graph. At high level, the algorithm cycles through all
the vertices of the input graph and populates Vout and Eout
adding the vertex and its corresponding edges, but when a
multi-edge is encountered this is first expanded to simple-
edges between replicated nodes, via the EXPANDNODE
routine, and then it is added to Eout together with the replicas
which are in turn added to Vout. For reasons of efficiency,
the procedure starts by expanding the nodes with more than
one multi-edge, (lines 4-17) while the expansion of nodes
with a single multi-edge is deferred until the end of the pro-
cedure (line 19 – 24). This delayed expansion mechanism
is implemented by means of a queue S that is initialized as
empty (line 3).

The first loop (lines 4-17) consists in iterating through
the nodes in the input multi-graph and replicating those with
more than one multi-edge updating Vout and Eout accord-
ingly for the output graph. Specifically, in line 5 we gather
the multi-edges for a node v and, if their count is greater
than 1, we proceed to replicate v. In lines 8-9, we remove v
from Vout and all its edges from Eout. In line 11, we invoke
the EXPANDNODE procedure, which returns Vrep and Erep.
Vrep contains the replicas of v, while Erep contains the pre-

Algorithm 1 Multi-graph expansion
Input: A Σ labeled multi-graph Γin = (Vin, Ein, s, t, z)
Output: The expanded graph Go = (Vout, Eout, z)

1: Vout = Vin
2: Eout = Ein
3: S = ∅ . queue
4: for v ∈ Vin do
5: Ev = GETMULTIEDGES(v,Γout)
6: if |Ev| > 1 then . there are many multi-edges
7: . Remove nodes and edges
8: Vout = Vout \ {v}
9: Eout = Eout \ {e ∈ Eout : s(e) = v or t(e) = v}

10: . Add replicated nodes and edges
11: (Vrep, Erep) = EXPANDNODE(v,Γout)
12: Vout = Vout ∪ Vrep
13: Eout = Eout ∪ Erep
14: else if |Ev| = 1 then
15: S = S ∪ {v} . add to queue
16: end if
17: end for
18: . Process nodes with a single multi-edge
19: for v ∈ S do
20: Ev = GETMULTIEDGES(v,Γout)
21: if |Ev| > 0 then
22: repeat lines 8-13
23: end if
24: end for
25: Γout = (Vout, Eout, z)

vious edges of v distributed for Vrep, including the identity
constraints between replicas (more details in Alg.2).

The elements of Vrep and Erep are merged with those of
Vout (line 12) and Eout (line 13) respectively, updating the
output graph. If v has only a single incoming or outgoing
multi-edge, then v is added to the queue S (line 15) and its
replication is deferred after the other nodes with a greater
number of multi-edges have been expanded.

The second loop (lines 19-24) consists in iterating
through the nodes v in the queue S . The procedure is sim-
ilar to the first loop: v is replicated when it is still involved

with a multi-edge. This check (line 21) is necessary be-
cause, during the first pass, the multi-edge involved with v
may have been expanded by the nodes adjacent to v.

The algorithm outputs the expanded graph Γout, which is
defined by the updated vertex set Vout and edge set Eout.

Expansion of node and multi-edge conversion The pro-
cedure EXPANDNODE, detailed in Algorithm 2, aims at
replicating a node i originally involved in a multi-edge with
a set of returned replicas Vrep. In addition, EXPANDNODE
converts the original multi-edges involving i in simple-
edges connecting the replicas. Specifically, incoming edges,
outgoing edges and identity constraints between replicas are
instantiated and added to the returned set of simple edges
Erep.

First, we compute the maximum number m between
the cardinality of incoming and the cardinality of outgoing
multi-edges involved with i (lines 2 - 7). This value is used
to initialize a ordered sequence Vrep = {v1, v2, . . . , vm}
with m replicas of i (line 8). The r-th element of Vrep is
referenced by using the array-like notation Vrep[r]. The set
of edges for the expanded node is initially empty (line 9).

The next step is to distribute the original constraints
among replicas, starting from the incoming edges (lines 11-
19). For every incoming multi-edge E, we take every sim-
ple edge e ∈ E and add a new edge f to Erep with the same
label and source node as e, but with a different target node
in Vrep (lines 11- 19). In other words, we are rerouting every
edge that makes up the multi-edge so that each of them has
a different replica Vrep[r] of i, as target node. Notice that
simple edges can be seen as multi-edges with cardinality
equal to 1, thus they are distributed as well.

We apply the same steps to distribute the constraints
among replicas for outgoing multi-edges. The main differ-
ence is that the re-routed edges f have the same label and
target node as their counterparts, but have a replica Vrep[r]
of i as a source node (lines 20-35) (see Fig. 2 in the main
paper).

Finally, we add the identity constraints between replicas
(lines 30 - 35). To this end, we iterate through the k − 1
pairs of replicas (v1, v2), indicated as P2(Vrep) (line 31),
and a new edge f is added to Vrep with source node v1,
target node v2 with the identity 1Σ as label.

Auxiliary function for multi-edges Algorithm 3 collects
auxiliary functions that are used to get the incoming, the
outgoing and all the multi-edges respectively for a node i in
the graph Γ. We recall that the notation E(i, j) denotes the
multi-edges connecting node i and j.

Computational complexity Let us begin by analyzing
the complexity of the EXPANDNODE procedure. EX-
PANDNODE includes three for-loops. The first and sec-

Algorithm 2 Expand node and convert multi-edges
1: function EXPANDNODE(i, V , E)
2: . Get max cardinality of multi-edges
3: E→i = GETINCOMINGMULTIEDGES(v,V, E)
4: m→i = maxe∈E→i

|e|
5: Ei→ = GETOUTGOINGMULTIEDGES(v,V, E)
6: mi→ = maxe∈Ei→ |e|
7: m = max(1,m→i,mi→) . Number of replicas
8: Vrep = {v1, . . . , vm} . Ordered set of replicas
9: Erep = ∅

10: . Distribute incoming edges among replicas
11: for E ∈ E→i do . E is a multi-edge
12: r = 1 . replicas’ counter
13: for e ∈ E do . e is a simple edge in E
14: instantiate f s.t. s(f) = t(e), t(f) = Vrep[r]
15: Erep = Erep ∪ {f}
16: z(f) = z(e)
17: r = r + 1
18: end for
19: end for
20: . Distribute outgoing edges among replicas
21: for E ∈ Ei→ do
22: r = 1
23: for e ∈ E do
24: instantiate f s.t. s(f) = Vrep[r], t(f) = t(e)
25: Erep = Erep ∪ {f}
26: z(f) = z(e)
27: r = r + 1
28: end for
29: end for
30: . Add identity constraints between replicas
31: for (v1, v2) ∈ P2(Vrep) do
32: instantiate f s.t. s(f) = v1, t(f) = v2

33: Erep = Erep ∪ {f}
34: z(f) = 1Σ

35: end for
36: return (Vrep, Erep)
37: end function

ond loops iterate through the incoming and outgoing multi-
edges of vertex i respectively. The number of outgoing and
incoming edges for i depends on its degree di. The upper
bound for the degree of a node is the number of vertices n
in the graph. Each iteration contains a nested loop that, for
every edge e in E, adds a new edge to Erep. Thus, the aver-
age number of iterations for this loop is equal to the average
multiplicity of the multi-edges in the multigraph. Let us as-
sume that the cost function c represents the unit time taken
to run an operation. From these considerations, we estimate
the run time t1 and t2 for the first two loops as follows:

t1 = t2 = nmc (1)

Algorithm 3 Auxiliary function for multi-edges

1: function GETINCOMINGMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of incoming multi-edges for i.
4: T = {e ∈ E | t(e) = i}
5: U = {v ∈ V | ∃e ∈ T s.t. s(e) = v}
6: return E→i = {E(v, i) : v ∈ U}
7: end function

1: function GETOUTGOINGMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of outgoing multi-edges for i.
4: S = {e ∈ E | s(e) = i}
5: U = {v ∈ V | ∃e ∈ S s.t. t(e) = v}
6: return Ei→ = {E(i, v) : v ∈ U}
7: end function

1: function GETMULTIEDGES(i, V , E)
2: Input: A node i and a multi-graph Γ = (V, E , s, t).
3: Output: The set of multi-edges for i.
4: E→i = GETINGOINGMULTIEDGES(i, Γ).
5: Ei→ = GETOUTGOINGMULTIEDGES(i, Γ).
6: return E→i ∪ Ei→.
7: end function

wherem is the average multiplicity of the multi-edges and n
is the number of vertices in the graph. The run time t3 of the
third loop, that enforces equality constraints, is estimated
as:

t3 ≤
m× (m− 1)

2
c. (2)

Hence the overall execution time texp for EXPANDNODE is
estimated as:

texp ≤ nmc +
m2

2
c− m

2
c (3)

and the procedure is of time complexity O(nm+m2)

The Multi-graph expansion algorithm is made of two for-
loops. The first loop iterates over n elements, where n is
the number of vertices in the input multigraph. The sec-
ond loop iterates over a subset of the vertex set of the input
multigraph, hence it iterates over a maximum of n elements
as well. Both loops perform a similar set of operations. For
every iteration, the multi-edges of the current vertex v are
queried. We assume that this operation is supported by a
data structure that can access the edges of a vertex directly,
thus getting the multi-edges of v in constant time. The EX-
PANDNODE procedure is invoked once per iteration and the
vertex and edge sets of the graph are updated accordingly.

Figure 1: Execution time varying n the number of nodes and the
average multiplicity m.

The overall run time estimate for the expansion of the
graph is therefore:

t ≤ 2n(c+ texp) = 2nc+ 2n2mc+ 2n
m2

2
c− 2n

m

2
c (4)

and the algorithm if of time complexity O(n2m+ nm2).
In general, the number of vertices n in the input multi-

graph is much larger than the average multiplicity of the
multi-edges in the same graph (n� m), therefore:

n2m+ nm2 = nm(n+m) ≈ n2m (5)

and the time complexity isO(n2m) in general, as confirmed
by the simulation reported in Fig.1 where the execution time
with respect to different number of nodes n is computed for
different values of average multiplicity m.

2. Constrained eigenvalue problem
Let us resume from Theorem 1 (Section 3.3), whose

statement is reported here for the reader’s convenience:

Theorem 1. The stationary points of the cost function

min
X
‖MX‖2F subject to X>X = Id, C>X = 0,

are given by the eigenvectors of
(
I− CC†)M>M, where C†

is the pseudo-inverse of C

Recall that M>M is the matrix whose eigenvectors we
are pursuing and C is the constraint matrix of rank k.

Consider the complete orthogonal decomposition of C:

C = Q

[
L 0
0 0

]
Z> (6)

where Q and Z are orthogonal and L is k × k non-singular.
With the change of variable Y = Q>X the constraint

rewrites:

Z

[
L> 0
0 0

]
Y = 0 ⇐⇒

[
L> 0
0 0

] [
Y1

Y2

]
= 0 ⇐⇒ Y1 = 0

(7)
and the original quadratic form X>M>MX becomes:
Y>GY where

G = Q>M>MQ =

[
G11 G12

G>
12 G22

]
. (8)

Let the columns of Y2 be the d orthogonal eigenvectors
corresponding to the least d eigenvalues of the (ν − k) ×
(ν − k) symmetric matrix G22 (where ν denotes the size of
M>M), then it is easy to see that the solution is given by

X = Q

[
0
Y2

]
. (9)

Please note that only the Q matrix of the complete or-
thogonal decomposition of C is used in computing the solu-
tion. It turns out that this matrix is the same Q of the rank
revealing QR decomposition:

C = Q

[
R S
0 0

]
E> (10)

where E is a permutation and R1 is k × k upper-triangular,
non-singular. This decomposition can be computed with the
Matlab command [Q,R,E] = qr(C).

This formulation, described in [2], sidesteps the matrix
P – which entails computing the pseudo-inverse of C – at
the cost of performing the QR decomposition of C.

3. Tables
For the reader’s convenience, we report here a more read-

able version of the tables appearing in the main paper.

References
[1] David Crandall, Andrew Owens, Noah Snavely, and Daniel P.

Huttenlocher. Discrete-continuous optimization for large-
scale structure from motion. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3001–3008, 2011. 5

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. The
John Hopkins University Press, third edition, 1996. 4

[3] K. Wilson and N. Snavely. Robust global translations with
1DSfM. In Proceedings of the European Conference on Com-
puter Vision, pages 61–75, 2014. 5

Table 1: Partitioned synchronization in SO(3) on real data sets from [3, 1]. The average error ε̄, median error ε̂, and running time t are
reported for MULTISYNC and edge averaging. Full synchronization performances are included but are intended only as an ideal reference
as it works on different assumptions, having at disposal the full graph instead of partitioning it.

Edge averaging MULTISYNC Full sync

Data set n c ε̄ ε̂ t ε̄ ε̂ t ε̄ ε̂ t

Ellis Island 247 9 3.56 0.73 1.02 3.49 0.68 1.07 3 0.47 3.4
Piazza del Popolo 345 11 5.62 1.86 1.27 5.22 1.41 1.38 3.3 0.86 3.47
NYC Library 376 11 4.91 3.35 0.93 4.24 2.32 1.01 3.16 1.27 4.8
Madrid Metropolis 394 11 7.84 3.19 1.13 7.14 2.52 1.18 6.6 1.12 1.18
Yorkminster 458 12 5.96 3.98 1.33 4.98 2.91 1.37 3.5 1.58 4.83
Montreal N. Dame 474 12 2.67 1.02 1.32 2.11 0.87 1.41 1.12 0.5 10.1
Tower of London 489 13 6.43 3.51 1.07 5.54 2.74 1.12 4.21 2.33 3.91
Notre Dame 553 13 4.25 1.92 3.82 3.43 0.85 3.87 2.7 0.65 22
Alamo 627 14 6.89 1.63 4.21 6.42 1.57 4.28 3.7 1.02 26.5
Gendarmenmarkt 742 15 39.54 21.18 2.29 34.32 12.68 2.34 40.82 6.09 39.9
Vienna Cathedral 918 17 15.73 4.87 3.88 11.01 3.73 3.92 6.2 1.27 50.2
Union Square 930 17 7.71 3.88 3.65 7.25 3.67 3.71 6.18 3.6 6.61
Roman Forum 1102 17 10.03 9.12 4.95 6.91 3.39 5.01 2.81 1.4 12.1
Piccadilly 2508 21 19.89 10.21 17.45 17.47 8.21 17.61 4.42 1.94 241
Cornell Arts Quad 5530 41 8.64 3.29 17.88 6.25 2.71 18.02 3.2 1.71 191

Table 2: Performances of MULTISYNC combined with different techniques, for synchronization in SO(3) on real data sets [3, 1]. The
median error ε̂, and running time t are reported.

EIG-IRLS L1-IRLS R-GoDec
MULTISYNC Full sync MULTISYNC Full sync MULTISYNC Full sync

Data set n c ε̂ t ε̂ t ε̂ t ε̂ t ε̂ t ε̂ t

Ellis Island 247 9 1.15 0.43 1.18 0.82 1.05 0.41 0.57 2.35 1.48 0.23 1.00 0.23
Piazza del Popolo 345 11 1.78 1.18 1.02 2.24 1.84 0.53 0.98 3.55 1.86 0.24 1.48 0.49
NYC Library 376 11 3.24 3.15 1.98 1.65 2.02 0.39 1.33 2.36 2.82 0.47 3.20 1.35
Madrid Metropolis 394 11 4.01 3.83 4.43 1.79 2.68 0.57 1.01 4.20 3.94 0.29 4.07 0.49
Yorkminster 458 12 2.91 2.85 1.81 3.18 2.86 1.07 1.69 2.29 2.85 0.43 2.69 2.03
Montreal N. Dame 474 12 2.12 6.92 0.59 4.09 1.01 3.67 0.58 7.10 1.02 0.52 0.85 1.05
Tower of London 489 13 2.98 3.74 2.79 2.43 2.83 1.20 2.63 1.94 2.89 0.46 3.28 2.11
Notre Dame 553 13 1.23 5.22 0.74 7.46 1.22 25.94 0.65 29.11 1.57 1.79 1.05 1.10
Alamo 627 14 1.99 2.01 1.19 11.05 1.87 1.84 1.09 32.22 1.61 0.79 1.48 1.67
Gendarmenmarkt 742 15 26.88 8.19 76.97 11.30 14.81 2.12 28.85 12.01 37.36 1.01 28.70 5.83
Vienna Cathedral 918 17 4.72 2.88 1.62 18.23 3.92 1.68 1.37 56.80 2.53 1.59 2.08 9.26
Union Square 930 17 18.95 4.13 4.93 6.48 4.33 1.05 3.97 4.82 20.17 1.57 7.16 10.58
Roman Forum 1102 17 7.89 6.11 1.86 15.46 3.85 2.20 2.27 12.46 5.54 1.12 7.54 14.77
Piccadilly 2508 21 39.55 54.05 24.87 284.87 9.01 8.93 1.89 287.23 11.79 12.24 13.36 47.13
Cornell Arts Quad 5530 41 - - - - 5.49 30.10 1.98 73.51 17.13 28.24 13.21 586.6

