Synchronization of Group-labelled Multi-graphs
Supplementary material

Andrea Porfiri Dal Cin', Luca Magril, Federica Arrigoniz, Andrea Fusiello? and Giacomo Boracchi!

'DEIB - Politecnico di Milano (Italy)

This document provides additional materials that were
omitted from the main manuscript due to space restrictions.
In particular, in Section | we detail the graph-expansion al-
gorithm presented in Section 3.2 of the main paper, while
Section 2 provides a more detailed description of the proof
of Theorem 1 in Section 3.3. Full-sized tables are reported
in Section 3.

1. Multi-graph expansion algorithm

The multi-graph expansion algorithm is an iterative
greedy procedure that turns a X-labeled multi-graph I'j,
given in input into a simple graph Loy = (Vout, Eout, 2)- Al-
gorithm 1 describes the main steps. Please, refer to Defini-
tions 1 and 2 in the main paper for the notion of a multi-
graph and multi-edges, respectively. Intuitively, a multi-
edge is a collection of edges with the same source and target
nodes.

At first, in lines 1-3, we initialize the vertex set and
the edge set of the output graph to the values of the input
multi-graph. At high level, the algorithm cycles through all
the vertices of the input graph and populates Vi, and Eyy
adding the vertex and its corresponding edges, but when a
multi-edge is encountered this is first expanded to simple-
edges between replicated nodes, via the EXPANDNODE
routine, and then it is added to &, together with the replicas
which are in turn added to V. For reasons of efficiency,
the procedure starts by expanding the nodes with more than
one multi-edge, (lines 4-17) while the expansion of nodes
with a single multi-edge is deferred until the end of the pro-
cedure (line 19 — 24). This delayed expansion mechanism
is implemented by means of a queue S that is initialized as
empty (line 3).

The first loop (lines 4-17) consists in iterating through
the nodes in the input multi-graph and replicating those with
more than one multi-edge updating V¢ and &, accord-
ingly for the output graph. Specifically, in line 5 we gather
the multi-edges for a node v and, if their count is greater
than 1, we proceed to replicate v. In lines 8-9, we remove v
from Vo and all its edges from &y. In line 11, we invoke
the EXPANDNODE procedure, which returns Vyep and Exep.
Vrep contains the replicas of v, while &, contains the pre-

2DISI - University of Trento (Italy)

3DPIA - University of Udine (Italy)

Algorithm 1 Multi-graph expansion
Input: A 3 labeled multi-graph Ty, = Vi, &ins 8, 8, 2)
Output: The expanded graph Go = (Vout, Eout, 2)

I: Voul = Vi

2: gout = gi

3:8=10 > queue
4: for v € Vi, do

5: &, = GETMULTIEDGES (v, Toy()

6: if |€,| > 1 then > there are many multi-edges
7: > Remove nodes and edges

8: Vout = Vout \ {'U}

9: Eont = Eout \ {€ € Eoqu: s(e) =vort(e) =v}
10 > Add replicated nodes and edges
11 (Vrep, Erep) = EXPANDNODE (v, I'oy)

12: vout = vout U Vrep

13: goul = “:out U grep

14: else if |£,| = 1 then

15: S=8U{v} > add to queue
16: end if

17: end for

18: > Process nodes with a single multi-edge
19: forv € S do

20: &, = GETMULTIEDGES (v, Toy)

21: if |£,| > 0 then

22: repeat lines 8-13
23: end if
24: end for

25: Toue = (Vouty Eout; 2)

vious edges of v distributed for Vyp, including the identity
constraints between replicas (more details in Alg.2).

The elements of Vi, and &, are merged with those of
Vour (line 12) and &,y (line 13) respectively, updating the
output graph. If v has only a single incoming or outgoing
multi-edge, then v is added to the queue S (line 15) and its
replication is deferred after the other nodes with a greater
number of multi-edges have been expanded.

The second loop (lines 19-24) consists in iterating
through the nodes v in the queue S. The procedure is sim-
ilar to the first loop: v is replicated when it is still involved

with a multi-edge. This check (line 21) is necessary be-
cause, during the first pass, the multi-edge involved with v
may have been expanded by the nodes adjacent to v.

The algorithm outputs the expanded graph Iy, which is
defined by the updated vertex set Vo, and edge set Eqy.

Expansion of node and multi-edge conversion The pro-
cedure EXPANDNODE, detailed in Algorithm 2, aims at
replicating a node ¢ originally involved in a multi-edge with
a set of returned replicas Viep. In addition, EXPANDNODE
converts the original multi-edges involving ¢ in simple-
edges connecting the replicas. Specifically, incoming edges,
outgoing edges and identity constraints between replicas are
instantiated and added to the returned set of simple edges
Erep-

First, we compute the maximum number m between
the cardinality of incoming and the cardinality of outgoing
multi-edges involved with ¢ (lines 2 - 7). This value is used
to initialize a ordered sequence Vi, = {v1,v2,...,Um}
with m replicas of i (line 8). The r-th element of V, is
referenced by using the array-like notation Viep[r]. The set
of edges for the expanded node is initially empty (line 9).

The next step is to distribute the original constraints
among replicas, starting from the incoming edges (lines 11-
19). For every incoming multi-edge F, we take every sim-
ple edge e € E and add a new edge f to &p with the same
label and source node as e, but with a different target node
in Viep (lines 11-19). In other words, we are rerouting every
edge that makes up the multi-edge so that each of them has
a different replica Viep[r] of i, as target node. Notice that
simple edges can be seen as multi-edges with cardinality
equal to 1, thus they are distributed as well.

We apply the same steps to distribute the constraints
among replicas for outgoing multi-edges. The main differ-
ence is that the re-routed edges f have the same label and
target node as their counterparts, but have a replica Viep 7]
of 7 as a source node (lines 20-35) (see Fig. 2 in the main
paper).

Finally, we add the identity constraints between replicas
(lines 30 - 35). To this end, we iterate through the k£ — 1
pairs of replicas (vi,v2), indicated as Py(Viep) (line 31),
and a new edge f is added to V., with source node vy,
target node vo with the identity 1y as label.

Auxiliary function for multi-edges Algorithm 3 collects
auxiliary functions that are used to get the incoming, the
outgoing and all the multi-edges respectively for a node ¢ in
the graph I'. We recall that the notation E(4, j) denotes the
multi-edges connecting node ¢ and j.

Computational complexity Let us begin by analyzing
the complexity of the EXPANDNODE procedure. EX-
PANDNODE includes three for-loops. The first and sec-

Algorithm 2 Expand node and convert multi-edges
1: function EXPANDNODE(, V, &)

2: > Get max cardinality of multi-edges
3: &_,; = GETINCOMINGMULTIEDGES (v, V, £)
4: M_y; = MaXece_,, |€]
5: &i—, = GETOUTGOINGMULTIEDGES (v, V, £)
6: mM;—, = MaXeee,_, |€]
7: m = max(1l,m_,;,m;—) > Number of replicas
8: Viep = {1, ..., 0m} > Ordered set of replicas
9: grep = @
10: > Distribute incoming edges among replicas
11: for E € &.,;do > F is a multi-edge
12: r=1 > replicas’ counter
13: for e € E do > e is a simple edge in
14: instantiate f s.t. s(f) = t(e), t(f) = Viep[r]
15: Erep = Erep U{ S}
16: z(f) = z(e)
17: r=r+1
18: end for
19: end for
20: > Distribute outgoing edges among replicas
21: for £ € &_, do
22: r=1
23: fore € E' do
24: instantiate f s.t. s(f) = Viep[r], t(f) = t(e)
25: Erep = Erep U{ S}
26: z(f) = z(e)
27: r=r-+1
28: end for
29: end for
30: > Add identity constraints between replicas
31: for (Ul, Ug) S PQ(Vrep) do
32: instantiate f s.t. s(f) = v1, t(f) = vo
33: Erep = Erep U{ S}
34: z2(f) = 1x
35: end for
36: return (Vrep, Erep)

37: end function

ond loops iterate through the incoming and outgoing multi-
edges of vertex ¢ respectively. The number of outgoing and
incoming edges for ¢ depends on its degree d;. The upper
bound for the degree of a node is the number of vertices n
in the graph. Each iteration contains a nested loop that, for
every edge e in F/, adds a new edge to &,¢p. Thus, the aver-
age number of iterations for this loop is equal to the average
multiplicity of the multi-edges in the multigraph. Let us as-
sume that the cost function c represents the unit time taken
to run an operation. From these considerations, we estimate
the run time ¢; and ¢5 for the first two loops as follows:

t1 =t = nmc (1)

Algorithm 3 Auxiliary function for multi-edges

1: function GETINCOMINGMULTIEDGES(Z, V, &)

2: Input: A node ¢ and a multi-graph T = (V, €, s, t).
3: Output: The set of incoming multi-edges for .

4: T={eef|tle) =i}

5: U={veV|TeeTst se) =v}

6 return E_,; = {E(v,i) : v € U}

7: end function

function GETOUTGOINGMULTIEDGES(4, V, &)
Input: A node ¢ and a multi-graph ' = (V, €, s, t).
Output: The set of outgoing multi-edges for 3.
S={ecf|s(e) =1}
U={veV|TeecSst tle) =v}
return &, = {E(i,v) : v € U}
end function

AN O o

function GETMULTIEDGES(Z, V, £)
Input: A node ¢ and a multi-graph ' = (V, &, s, t).
Output: The set of multi-edges for .
&€_,; = GETINGOINGMULTIEDGES(7, I').
&i_. = GETOUTGOINGMULTIEDGES(Z, I').
return £_,; U&;_,.
end function

A O o -

where m is the average multiplicity of the multi-edges and n
is the number of vertices in the graph. The run time 3 of the
third loop, that enforces equality constraints, is estimated
as:

mx (m—1)

t3 5

IN

c. 2)

Hence the overall execution time ¢, for EXPANDNODE is
estimated as:

2

tegp < nMC + %c — Ec 3)

and the procedure is of time complexity O(nm + m?)

The Multi-graph expansion algorithm is made of two for-
loops. The first loop iterates over n elements, where n is
the number of vertices in the input multigraph. The sec-
ond loop iterates over a subset of the vertex set of the input
multigraph, hence it iterates over a maximum of n elements
as well. Both loops perform a similar set of operations. For
every iteration, the multi-edges of the current vertex v are
queried. We assume that this operation is supported by a
data structure that can access the edges of a vertex directly,
thus getting the multi-edges of v in constant time. The EX-
PANDNODE procedure is invoked once per iteration and the
vertex and edge sets of the graph are updated accordingly.

Execution Time vs. n

Mayg =20
Mayg =15

10+

Mayg =10
Mavg =5

Execution Time [s]

20 40 60 80 100

Figure 1: Execution time varying n the number of nodes and the
average multiplicity m.

The overall run time estimate for the expansion of the
graph is therefore:

2
t <2n(c+tesp) = 2nc+2n2mc+2nm7c— Qn%c 4)

and the algorithm if of time complexity O(n?m + nm?).
In general, the number of vertices n in the input multi-

graph is much larger than the average multiplicity of the

multi-edges in the same graph (n >> m), therefore:

n?m + nm? = nm(n + m) =~ n’m)

and the time complexity is O(n?m) in general, as confirmed
by the simulation reported in Fig.1 where the execution time
with respect to different number of nodes n is computed for
different values of average multiplicity m.

2. Constrained eigenvalue problem

Let us resume from Theorem 1 (Section 3.3), whose
statement is reported here for the reader’s convenience:

Theorem 1. The stationary points of the cost function

min [MX||% subjectto XX =14, CTX =0,

are given by the eigenvectors of (I — CCT) MTM, where Ct
is the pseudo-inverse of C

Recall that MM is the matrix whose eigenvectors we
are pursuing and C is the constraint matrix of rank k.
Consider the complete orthogonal decomposition of C:

C—QF(‘) 8] Al ©)

where Q and Z are orthogonal and L is k& x k non-singular.
With the change of variable Y = QTX the constraint

rewrites:

LT 0 LT o] [Y,
Z[O O}Y_O{:) {0 0][\(2 =0 <<= Y;=0
(7N

and the original quadratic form X'MTMX becomes:
YT GY where
®)

G = QTMTMQ _ |:G11 G12:|]

Gly Ga

Let the columns of Y2 be the d orthogonal eigenvectors
corresponding to the least d eigenvalues of the (v — k) X
(v — k) symmetric matrix Goo (where v denotes the size of
MT M), then it is easy to see that the solution is given by

X = Q m . ©)

Please note that only the Q matrix of the complete or-
thogonal decomposition of C is used in computing the solu-
tion. It turns out that this matrix is the same Q of the rank
revealing QR decomposition:

R S|t
C=Q {0 0} E (10)
where E is a permutation and R; is k x k upper-triangular,
non-singular. This decomposition can be computed with the
Matlab command [Q,R,E] = gr (C).

This formulation, described in [2], sidesteps the matrix
P — which entails computing the pseudo-inverse of C — at
the cost of performing the QR decomposition of C.

3. Tables

For the reader’s convenience, we report here a more read-
able version of the tables appearing in the main paper.

References

[1] David Crandall, Andrew Owens, Noah Snavely, and Daniel P.
Huttenlocher. Discrete-continuous optimization for large-
scale structure from motion. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3001-3008, 2011. 5

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. The
John Hopkins University Press, third edition, 1996. 4

[3] K. Wilson and N. Snavely. Robust global translations with
1DSIM. In Proceedings of the European Conference on Com-
puter Vision, pages 61-75, 2014. 5

Table 1: Partitioned synchronization in SO(3) on real data sets from [3, 1]. The average error €, median error ¢, and running time ¢ are
reported for MULTIS YNC and edge averaging. Full synchronization performances are included but are intended only as an ideal reference
as it works on different assumptions, having at disposal the full graph instead of partitioning it.

Edge averaging MULTISYNC Full sync
Data set n c € € t € € t € € t
Ellis Island 247 9 356 0.73 1.02 349 0.68 1.07 3 047 34
Piazza del Popolo 345 11 5.62 1.86 127 522 141 1.38 33 086 347
NYC Library 376 11 491 335 093 424 232 1.01 316 127 48
Madrid Metropolis 394 11 7.84 3.19 .13 7.14 252 1.18 6.6 1.12 1.18
Yorkminster 458 12 596 398 133 498 291 1.37 35 1.58 4.83

Montreal N. Dame 474 12 2.67 1.02 .32 211 0.87 1.41 .12 05 10.1
Tower of London 489 13 643 351 1.07 554 274 112 421 233 3091
Notre Dame 553 13 425 192 382 343 08 3.87 27 0.65 22

Alamo 627 14 6.89 1.63 421 642 157 428 3.7 1.02 265
Gendarmenmarkt 742 15 3954 21.18 229 3432 1268 234 4082 6.09 399
Vienna Cathedral 918 17 1573 487 388 11.01 373 392 6.2 1.27 50.2

Union Square 930 17 7.71 388 3.65 725 3,67 371 618 3.6 6.61
Roman Forum 1102 17 10.03 9.12 495 6091 339 5.01 2.81 14 121
Piccadilly 2508 21 19.89 1021 1745 1747 821 17.61 442 194 241

Cornell Arts Quad 5530 41 864 329 17.88 625 271 18.02 32 1.71 191

Table 2: Performances of MULTISYNC combined with different techniques, for synchronization in SO(3) on real data sets [3, 1]. The
median error €, and running time ¢ are reported.

EIG-IRLS L1-IRLS R-GoDec

MULTISYNC Full sync MULTISYNC Full sync MULTISYNC Full sync
Data set n c € t € t é t é 13 € 13 € t
Ellis Island 247 9 115 043 1.18 0.82 1.05 041 057 235 148 023 1.00 0.23
Piazza del Popolo 345 11 178 1.18 1.02 2.24 1.84 053 098 3.55 1.86 024 148 049
NYC Library 376 11 324 315 198 1.65 202 039 133 2.36 282 047 320 135
Madrid Metropolis 394 11 4,01 3.83 443 1.79 268 057 101 4.20 394 029 407 049
Yorkminster 458 12 291 285 181 3.18 286 1.07 1.69 2.29 285 043 269 203

Montreal N. Dame 474 12 212 692 0.59 4.09 1.01 3.67 058 7.10 1.02 052 085 1.05
Tower of London 489 13 298 374 279 243 2.83 1.20 2.63 1.94 289 046 328 211
Notre Dame 553 13 123 522 0.74 7.46 122 2594 065 29.11 1.57 1.79 1.05 1.10
Alamo 627 14 199 201 1.19 11.05 1.87 1.84 1.09 3222 1.61 0.79 1.48 1.67
Gendarmenmarkt 742 15 2688 819 7697 1130 1481 212 28.85 12.01 3736 1.01 28.70 5.83
Vienna Cathedral 918 17 472 2.88 1.62 1823 3.92 1.68 137 56.80 2.53 1.59 208 9.26

Union Square 930 17 1895 4.13 493 6.48 4.33 1.05 397 482 2017 157 7.16 10.58
Roman Forum 1102 17 7.89 6.11 1.86 1546 3.8 220 227 1246 554 .12 754 1477
Piccadilly 2508 21 3955 54.05 24.87 284.87 9.01 8.93 1.89 28723 11.79 1224 1336 47.13

Cornell Arts Quad 5530 41 - - - - 549 30.10 198 73,51 17.13 2824 1321 586.6

