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1Carnegie Mellon University 2University of Illinois at Urbana-Champaign
rajshekd@andrew.cmu.edu yxw@illinois.edu moura@andrew.cmu.edu

1. Overview of ConFT
Algorithm 1 provides an overview of our distractor-

aware contrastive finetuning approach ConFT.

2. Additional Experimental Details
2.1. Data Domains

Problem Setup
(Prior Learning) Domain Dataset # categories per split

train val test
Base miniImageNet 64 16 20
Novel CUB 100 50 50

Cross-Domain Novel Cars 98 49 49
Novel Places 183 91 91
Novel Plantae 100 50 50

Unsupervised
Base
and

Novel
miniImageNet 64 16 20

Table 1. Dataset statistics for both cross-domain [14] and un-
supervised prior learning settings [7]. Each dataset is split into
train, val, and test categories. For the cross-domain setup, the train
split of miniImageNet is always used as the base domain whereas
the test splits of other datasets are used as the novel domain on
which few-shot evaluation is performed. For the unsupervised
prior learning setup, train split of miniImageNet is stripped off
its labels to emulate an unlabelled base domain, whereas the test
split is used as the novel domain. In both setups, val splits are used
to cross-validate hyperparameters specific to the associated novel
domain.

In the main paper, we evaluated our finetuning method
on various datasets that serve as base or novel domains in
cross-domain as well as unsupervised prior learning set-
tings. Here, in Table 1, we summarize the statistics of these
datasets along with their specific use as base or novel do-
main. Additionally, in Table 2, we visualize these domains,
both qualitatively and quantitatively, to provide a reference
to their relative proximity in the representation space. This
proximity provides a rough estimate of how related two do-
mains are and consequently, the degree of knowledge trans-
fer across domains for cross-domain few-shot classification.

Base
Domain

Novel
Domain

Proximity
Rank PAD

Places 1 1.06
miniImageNet CUB 2 1.57

Plantae 3 1.76
Cars 4 1.86

Table 2. Qualitative and quantitative visualization of the base
and novel domains in the cross-domain benchmark [14]. We
use t-SNE to visualize the base and novel domains in our cross-
domain benchmark. The domain names are presented in boxes
with colors that match the corresponding domains in the scatter
plot. Here,“miniIm” refers to the miniImageNet domain. We also
compute the Proxy A-distance (PAD) [1, 5] between the base do-
main and a novel domain as a measure of their relatedness in the
representation space. Smaller the PAD value, closer is the novel
domain to the base and hence, more related. The PAD values are
also used to rank the novel domains according to their proximity
to the base domain with the closest domain ranked the highest.

For the qualitative visualization in Table 2, we use t-SNE
[15] to embed features of randomly sampled datapoints
from each domain onto a 2-dimensional space. These fea-
tures are obtained from the pretrained ResNet10 model (see
§2.2 for training details) and are used for our cross-domain
experiments. For quantitative visualization, we compute
Proxy A-distance [1, 5], or PAD, between the base domain



Algorithm 1 Distractor-Aware Contrastive Finetuning
Input: Distractor Dataset (D), Prior Model (Mθ0 ), few-shot task (τ ), Number of Finetuning Epochs (Jft), Augmentation

Function (A), Temperature Coefficient (γ), Learning Rate (η)
Output: Finetuned Model Parameters (θτ )

1: shuffle D
2: for j← 1 to Jft do
3: From D, randomly sample a fixed size batch Sdt without replacement
4: Using A augment each support sample xi, ∀i ∈ Isupp
5: For each augmented support sample, define i) anchor-positive index set P (i); ii) anchor-negative index set N(i)

specific to τ ; and iii) distractor index set Idt
6: For all samples, compute zi =

hi

||hi||2 , where h =Mθ(A(xi)), ∀i ∈ Isupp and h =Mθ(xi), ∀i ∈ Idt

7: Evaluate Lconft(θ) using the quantities computed in previous steps
8: Update model parameters θ ← θ − η∇Lconft(θ)
9: if j = |D| then

10: shuffle D
11: end if
12: end for

(here, miniImageNet) and a novel domain as a measure of
their closeness in the representation space. To compute
PAD, we train a binary classifier over the same ResNet10
model used for t-SNE but with frozen embedding weights.
The classifier distinguishes between randomly drawn sam-
ples of the base and novel domains. Denoting ϵ as the gen-
eralization error of this classifier, the PAD ∈ [0, 2] is calcu-
lated as 2(1− 2ϵ). Thus, a lower PAD value implies higher
generalization error which, in turn, signifies that the base
and novel domains are too similar to be distinguished well
enough. Finally, the PAD values are used to rank each novel
domain, such that the highest rank is assigned to the one
closest to the base domain i.e., miniImageNet. These ranks
correlate well with the t-SNE visualization as well. For in-
stance, CUB and Places, which are ranked higher than Cars
and Plantae, are also closer to miniImageNet in the t-SNE
plot.

2.2. Prior Learning

As described in the main paper, we use a ResNet10
model [6] as our prior embedding for cross-domain few-
shot classification. To avoid specialized hyperparameter
tuning while training the prior model, we simply use the
pretrained weights1 made available by [14]. This model was
originally trained on all 64 categories of the miniImageNet
train split.

For the unsupervised prior learning, we train a modified
four-layer convolution neural network (CNN), using the re-
cently proposed self-supervised contrastive learning objec-
tive [2]. As proposed in [2], we use a 128-dimensional lin-
ear projection head on top of the CNN for better generaliz-
ability of learnt representations. We train the model with a

1https://github.com/hytseng0509/
CrossDomainFewShot

batch size of 512, temperature coefficient 0.1, and the same
augmentation scheme introduced in [2]. Further, we use
ADAM optimizer with initial learning rate of 1e-3, and a
weight decay of 1e-5.

2.3. Hyperparameter Details

Our proposed contrastive finetuning involves a few hy-
perparameters such as temperature, learning rate, early-
stopping criteria, distractor batch size, and data augmenta-
tion scheme. For early-stopping criteria, we set a predeter-
mined range of epochs up to which the pretrained embed-
ding model is finetuned. Here, one finetuning epoch refers
to one pass through all the samples of the few-shot task (ex-
clusive of distractors). The range of these epochs along with
other hyperparameters are summarized in Table 3 and Ta-
ble 4. Additionally, we also show the final hyperparameter
values used for finetuning in the cross-domain and unsuper-
vised prior learning settings (the corresponding experiments
were reported in the main paper).

3. Additional Ablations

In this section we elucidate the importance of two modi-
fications introduced to the standard contrastive loss, namely,
asymmetric construction of similarity pairs and relative
weighting of anchor-negative terms.

3.1. Asymmetric Construction of Similarity Pairs

Our proposed finetuning approach is a general con-
trastive learning framework for incorporating additional un-
labelled data in the form of distractors. While construc-
tion of positive distractor pairs (that share the same class)
is difficult in the absence of distractor labels, constructing
anchor-negatives, with anchors being task-specific samples,

https://github.com/hytseng0509/CrossDomainFewShot
https://github.com/hytseng0509/CrossDomainFewShot


CUB Cars Places Plantae
Hyperparameter Range 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

learning rate {5e-4, 5e-3} 5e-3 5e-3 5e-3 5e-3 5e-4 5e-4 5e-3 5e-3
temperature, γ {0.05, 0.1, 0.5} 0.1 0.1 0.05 0.05 0.1 0.05 0.1 0.1

distractor batch size, |Sdt| {64, 128} 64 128 128 128 64 64 128 128
early stopping epoch {50, 100, 200, 300, 400} 100 100 400 300 200 50 100 100

Table 3. Hyperparameter details for ConFT with cross-domain prior learning. This table summarizes the range of various hyperpa-
rameters used for finetuning. Additionally, we report the cross-validated values used for the cross-domain prior learning setup. The input
image resolution used in this setup is 224× 224.

miniImageNet
Hyperparameter Range 1-shot 5-shot

learning rate {5e-4, 5e-3} 5e-4 5e-4
temperature, γ {0.05, 0.1, 0.5} 0.05 0.05

distractor batch size, |Sdt| {64, 128} 64 64
early-stopping epoch {50, 100, 200, 300, 400, 500} 400 400

Table 4. Hyperparameter details for ConFT with unsupervised
prior learning. This table summarizes the range of various hyper-
parameters used for finetuning. Additionally, we report the cross-
validated values used for the unsupervised prior learning setup.
The input image resolution used in this setup is 84× 84.

Similarity-Pair
Construction Cars

1-shot 5-shot
Standard 37.09 ± 0.76 60.72 ± 0.74

Assymetric (ours) 39.11 ± 0.77 61.53 ± 0.75

Table 5. Comparing our proposed assymetric construction of
similarity pairs against standard construction:. Results are
shown for both 1-shot and 5-shot tasks sampled from the Cars
domain with miniImagenet as the base domain. These results
are averaged over 600 random novel tasks and are reported with
(±) 95% confidence intervals. Despite using more supervision in
the form of distractor labels, the standard pair construction under-
performs our (distractor) label-agnostic asymmetric pair construc-
tion.

is much easier following the non-overlapping assumption
of task and distractor categories. This results in an asym-
metric construction of similarity pairs where distractors,
unlike task-specific samples, can meaningfully participate
only as anchor-negatives. In fact, this asymmetry is criti-
cal in the unsupervised prior learning setup, where distrac-
tors are sampled from an unlabelled base domain. In the
case of cross-domain prior learning, however, we have a
labelled base data as a source for distractors. To motivate
our asymmetric pair construction in this case, we compare
it to a standard construction that allows distractors to ad-
ditionally participate as anchor-positives. To form such an
anchor-positive, a distractor is paired with another distractor
sharing the same class. Here, anchor-negatives with respect
to a distractor include all the datapoints that do not share
the class with it. This includes samples from both the novel
few-shot task and other distractors. Overall, the resulting
form of the contrastive loss can be viewed as applying su-

Figure 1. Comparing the effect of distractor batch size, |Sdt|,
on the weighted and unweighted versions of Lconft. The red
and blue bars represent weighted and unweighted versions of
Lconft, respectively, where α represents the parameter used to rela-
tively weigh task-specific and task-exclusive (distractors) anchor-
negative terms. For each novel domain and shot setting per do-
main, we compare the performance of two versions in terms of
the classification accuracy of unseen samples given a novel task
at various distractor batch sizes. These accuracies, as in all other
cross-domain experiments, are averaged over 600 randomly cho-
sen novel tasks.

pervised contrastive objective [8] (without augmentation-
based positives) to the union set of task samples and distrac-
tors within a training batch. In Table 5, we evaluate these
two types of pair constructions on the cross-domain setting,
miniImageNet→ Cars. Interestingly enough, our formula-
tion of the contrastive loss with asymmetric pair construc-
tion yields superior performance despite using less supervi-
sion than the supervised contrastive loss.

3.2. Importance of Weighted Negatives

Another important component of our loss is the rel-
ative weighting parameter α that balances the effect of
task-specific and task-exclusive (distractor based) anchor-
negative terms. To validate the utility of such a weight-
ing scheme, we compare the weighted version of Lconft to
its unweighted version i.e., α = 1. Following the re-
sults for various novel domains and shot settings in Fig-



ure 1, we make the following observations. The weighted
loss (red bars) performance improves with larger distrac-
tor batch sizes in most cases (5 out of 8). The improve-
ment is more pronounced for domains like Cars and Plantae
that are farther away from the base dataset - miniImageNet
(see Table 2). For closer domains like CUB or Places, we
sometimes notice a sweet spot at batch size = 64. In con-
trast, the unweighted version (blue bars) experiences a per-
formance drop with increasing batch sizes, when the novel
domains are farther from the base domain. In other cases,
the trends are inconclusive. The most important observa-
tion, however, comes from comparing the two versions of
the loss. Specifically, the weighted version not only out-
performs the unweighted loss at higher batch sizes but also
results in the best performance in almost every setting. The
only exception is Places, 5-shot where the unweighted loss
yields the best performance. A possible explanation is as
follows: due to the similarity of Places (novel domain) and
miniImageNet (base domain) in the embedding space (see
Table 2), distractor samples from Places may serve as hard
negatives that are important for effective contrastive learn-
ing [10]. Thus, down-weighting their contribution at higher
batch sizes would degrade the final performance.

3.3. Data Augmentation

Augmentation CUB Cars
Task Samples Distractors 5-shot 5-shot

- - 69.90 ± 0.75 58.64 ± 0.88
✓ - 70.53 ± 0.75 61.53 ± 0.75

Table 6. In this ablation we compare the few-shot performance
when a prior embedding is finetuned (using ConFT) with or with-
out augmentation to task-specific samples. Note that, we never use
augmentation for distractors in our experiments.

Yet another important component of our contrastive fine-
tuning objective is the data augmentation function A. To
avoid extensive tuning of large hyperparameter space asso-
ciated withA, we adopt a fixed augmentation strategy intro-
duced in [3]. In Table 6, we show the benefit of using this
strategy to augment samples specific to the novel task. Fol-
lowing preliminary investigations, we found that augment-
ing distractors did not make much difference. Hence, we
never apply data augmentation to distractors in our experi-
ments.

3.4. Loss Type

In Table 7, we compare contrastive and cross-entropy
finetuning in conjunction with the auxiliary cross-entropy
objective (MT). While the two objectives yield similar per-
formance for the CUB case, contrastive finetuning outper-
forms cross-entropy loss based finetuning in Cars. These re-
sults show that the contrastive loss could be a better choice
for few-shot classification.

Method CUB Cars
Prior Learning Task Specific Finetuning 5-shot 5-shot
CE Training MT-ceFT (β = 1) 71.35 ± 0.70 58.97 ± 0.76
CE Training MT-ceFT (β = 10) 74.32 ± 0.69 60.01 ± 0.74
CE Training MT-ConFT (β = 1) 71.65 ± 0.74 61.25 ± 0.70
CE Training MT-ConFT (β = 10) 74.45 ± 0.71 62.54 ± 0.72

Table 7. Ablation. Cross-entropy/contrastive finetuning with a
multi-task (MT) cross entropy objective. Here, all cross entropy
objectives are based on cosine classifier with a multiplying factor,
β

4. ConFT as a General Finetuning Approach

In Table 8, we validate the complementary effect of our
finetuning approach to a variety of prior learning schemes.
Specifically, we compare our simple cross-entropy objec-
tive with ProtoNet [11] and ProtoNet with auxiliary self-
supervision [12]. Both of these approaches are based on
meta-learning, and were originally proposed for in-domain
few-shot classification where base and novel tasks follow
the same distribution. Nevertheless, the embeddings thus
learnt are readily applicable to cross-domain tasks as well.
For the auxiliary self-supervision, we use image rotation as
our pretext task. While previous work [12] has demon-
strated the improvement in in-domain few-shot general-
ization resulting from rotation based self-supervision, we
found that the improvement is marginal in our cross-domain
setting (see ProtoNet without finetuning vs. ProtoNet +
Rot. without finetuning in Table 8), except for when the
novel domain is Cars. To obtain these results, we use the
official implementation2 of [12] with the same hyperparam-
eters (such as loss weighting term) but different backbone.
As our pretrained embedding, we trained a ProtoNet model
(with auxiliary self-supervision) based on ResNet10 [6] ar-
chitecture. Our main observation from Table 8 is as fol-
lows: while better prior learning objectives such as those
with auxiliary self-supervision can improve few-shot clas-
sification in the novel domains, finetuning with ConFT con-
sistently leads to large improvements over the prior embed-
dings.

5. Additional Comparison with Prior Work

In Table 9, we report additional comparison with a con-
current work SCL [9] that introduces attention-based spa-
tial contrastive objective in the prior-learning phase. For
a fair comparison to SCL, we adopt the same backbone
based on the ResNet12 architecture which was originally
proposed in [13]. While the spatial contrastive objective
benefits from larger image resolution (224×224), we found
it significantly increases the time for finetuning in our case,
especially given the larger backbone. So, in this case,
we conduct our experiments with a smaller resolution of
84×84 . Despite the drop in resolution, our finetuning based

2https://github.com/cvl-umass/fsl_ssl

https://github.com/cvl-umass/fsl_ssl


Method 5-shot
Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae
ProtoNet [11] - ResNet10 58.80 ± 0.77 44.07 ± 0.69 71.03 ± 0.72 51.33 ± 0.72
ProtoNet [11] ConFT (ours) ResNet10 66.63 ± 0.69 59.27 ± 0.73 72.05 ± 0.71 58.83 ± 0.76

ProtoNet + Rot. [12] - ResNet10 58.68 ± 0.75 46.48 ± 0.71 71.20 ± 0.75 51.93 ± 0.67
ProtoNet + Rot. [12] ConFT (ours) ResNet10 66.75 ± 0.71 61.67 ± 0.75 73.91 ± 0.70 60.38 ± 0.75

CE Training - ResNet10 62.80 ± 0.76 51.41 ± 0.72 70.71 ± 0.68 55.54 ± 0.69
CE Training ConFT (ours) ResNet10 70.53 ± 0.75 61.53 ± 0.75 72.09 ± 0.68 62.54 ± 0.76

Table 8. Combining ConFT with different pretraining schemes for cross-domain prior learning. We present the results for 5-way 5-
shot tasks averaged over 600 such tasks with (±) 95% confidence intervals. The highlighted numbers demonstrate that ConFT consistently
improves the few-shot performance of prior embeddings across data domains.

Method 1-shot
Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae

SCL [9] - ResNet12 50.09 ± 0.7 34.93 ± 0.6 60.32 ± 0.8 40.23 ± 0.6
CE Training - ResNet12 50.00 ± 0.77 34.88 ± 0.64 55.62 ± 0.91 38.47 ± 0.72
CE Training ConFT (ours) ResNet12 52.01 ± 0.82 39.54 ± 0.68 56.66 ± 0.85 40.90 ± 0.73

Method 5-shot
Prior Learning Task Specific Finetuning Backbone CUB Cars Places Plantae

SCL [9] - ResNet12 68.81 ± 0.6 52.22 ± 0.7 76.51 ± 0.6 59.91 ± 0.6
CE Training - ResNet12 69.75 ± 0.73 49.92 ± 0.74 73.79 ± 0.67 54.66 ± 0.77
CE Training ConFT (ours) ResNet12 76.49 ± 0.63 64.87 ± 0.70 74.22 ± 0.71 59.23 ± 0.77

Table 9. Additional Prior Work Comparison. SCL introduces a novel attention-based spatial contrastive objective for prior learning.
While we employ a much simpler cross-entropy objective for prior learning (see CE training without ConFT), finetuning the prior embed-
ding with ConFT outperforms SCL significantly in two (CUB and Cars) out of four domains. Our approach yields competitive results for
Plantae as well. Further, due to the complementary nature of finetuning, the best performance might be achieved by combining SCL with
our ConFT.

approach over simple cross-entropy prior learning outper-
forms the more sophisticated SCL by significant margins
in CUB (7 points) and Cars (13 points). While we attain
similar performance in the case of Plantae, we underper-
form in Places domain. This gap can be understood as a
consequence of a stronger SCL based prior embedding for
miniImageNet and greater similarity of the miniImageNet
domain to Places as opposed to other novel domains (see
Table 2). Nonetheless, our finetuning is complimentary to
SCL, and hence we suspect that the best performance could
be achieved by combining it with our ConFT.

6. Meta-Dataset Results
In this section, we present the results of our ConFT ap-

proach on Meta-Dataset (see Table 10). Here, we use an off-
the-shelf ResNet18 model3 pretrained on ImageNet-train-
split of Meta-Dataset using just cross-entropy objective. In
order to maintain consistency with pretraining, our finetun-
ing operates at a small image resolution of 84× 84. In this
experiments, we keep most of the hyperparameters fixed
across all datasets. In particular, we use a temperature of
0.1, a distractor batch size of 128, and a learning rate of
5e − 5. The early stopping epoch is cross-validated using
the meta-validation splits of respective datasets. We obe-
serve that our approach outperforms the state of the art in

3https://github.com/peymanbateni/simple-cnaps

7 out of 10 datasets and sometimes by a significant mar-
gin. This is despite the fact that our input resolution is
much smaller compared to 224× 224 in the state of the art
and our approach does not benefit from a tansductive set-
ting. Finally, our results reinforce the superiority of simple
finetuning over more complex meta-learning frameworks
(e.g. cross-attention based) even when the domain gap is
large.
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