Supplementary Material for: Unconstrained Scene Generation with Locally
Conditioned Radiance Fields

1. Model Architectures and Training Details

In this section we summarize the model architectures,
hyperparameter settings, and other training details used for
producing the GSN models presented in this paper.

1.1. Mapping Network

The mapping network maps the global latent code z
to an intermediate non-linear latent space [8]. All mod-
els in our experiments, including those that do not use the
global generator, use a mapping network which consists of
a normalization step followed by three linear layers with
LeakyReLU activations [10], as shown in Tab. 1.

Activation Output Shape
Input z - 128
Normalize - 128
Linear LeakyReLU (0.2) 128
Linear LeakyReLU (0.2) 128
Linear LeakyReLU (0.2) 128

Table 1: Mapping network architecture.

1.2. Global Generator

The purpose of the global generator (Tab. 2) is to map
from a single global latent code z to a 2D grid of local latent
codes W which represent the spatial layout of the scene.
The global generator is composed of successive modulated
convolutional layers [9] that are conditioned on the global
latent code. Following StyleGAN [8], the model learns a
constant input for the first layer. The first layers in every
pair of modulated convolutional layers thereafter upsamples
the feature map resolution by 2x, which is implemented
as a transposed convolution with a stride of 2, followed by
bilinear filtering [19].

The output resolution of the global generator (which is
also the spatial resolution of W) is a hyperparameter which
effectively controls the size of the spatial region represented
by each individual local latent code. We set the global gen-
erator output resolution to 32 x 32 for all experiments.

Activation Output Shape
Constant Input - 256 x 4 x 4
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 X 8 X 8
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 X 8 X 8
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 x 16 x 16
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 x 16 x 16
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 x 32 x 32
ModulatedConv (3 x 3) LeakyReLU (0.2) 256 x 32 x 32
ModulatedConv (3 x 3) - 32 x 32 x 32

Table 2: Global generator architecture.

1.3. From Global to Local Coordinate System

In this section we describe how to express 3D points p in
the local coordinate system respective to their correspond-
ing latent code w;; in the latent grid W € R**X5. We
start by defining a global coordinate system so that it’s ori-
gin lies at the center of W. This global coordinate system
is scaled to [—1, 41], where the limits are set to encompass
the max width, height and depth of trajectories on a dataset.
In this global coordinate system, v = % is size of a cell in
W where s is the spatial dimension of W. Given a point
P = [Ps, Py, -] in the global coordinate system we com-
pute p’ = [p},, pi,, p>] as follows:

P, =p, modu (1)
Py =Py )
p. =p. modu 3)

Finally, after the modulo operation we scale p’ to
[—1,+1].

1.4. Local Generator

The local generator is composed of a locally conditioned
radiance field network which maps coordinates and view
direction to appearance a and occupancy o, a volumetric
rendering step which accumulates along sampled rays to
convert a and o values to feature vectors, and a refinement
network which upsamples feature maps to higher resolution
RGB images.



The locally conditioned radiance field network (Fig. 1)
mimics the architecture of the the original NeRF net-
work [11]. To condition the network such that it can rep-
resent many different radiance fields we swap out the fixed
linear layers for modulated linear layers similar to those
used in CIPS [1], where each modulated linear layer is con-
ditioned on wj;. Each modulated linear layer has 128 chan-
nels.

When performing volumetric rendering we threshold oc-
cupancy values o with a softplus as in D-NeRF [14] as op-
posed to the standard ReLU, as we find it leads to more
stable training. For all experiments we sample 64 samples
per ray. When generating 64 x 64 images we sample the
radiance field network to produce feature maps at 32 x 32
resolution, and when generating 128 x 128 resolution im-
ages we sample feature maps at 64 x 64 resolution.

Once volumetric rendering has been performed we up-
sample the resulting feature map with refinement blocks
(Fig. 3) until the desired resolution is achieved, then apply
a sigmoid to bound the final output, as in GIRAFFE [13].
In general, we found that sampling higher resolution feature
maps directly from the radiance field produced higher qual-
ity results compared to sampling at low resolution and ap-
plying many refinement blocks, but the computational cost
is significantly higher.

1.5. Discriminator

The discriminator is based on the architecture used in
StyleGAN2[9] (Tab. 3), including residual blocks (Fig. 3)
and minibatch standard deviation layer [7]. When including
depth information as input to the discriminator we normal-
ize it to [0, 1]. In the case that the radiance field network
is sampled at a resolution lower than the final output res-
olution (such as when using the refinement network), then
resulting depth maps will have lower resolution than real
examples. To prevent the discriminator from using this dif-
ference in detail to differentiate real and fake samples we
downsample all real depth maps to match the resolution of
the generated depth maps, then upsample them both back to
full resolution.

The decoder (Tab. 4) takes as input 4 x 4 resolution
feature maps from the discriminator (before the minibatch
standard deviation layer), and applies successive transposed
convolutions with a stride of 2 and bilinear filtering [19] to
upsample the input until the original resolution is recovered.

1.6. Sampling Camera Poses

We use poses from camera trajectories in the training set
as candidate poses during sampling, as real camera poses
better reflect the true distribution of occupable locations
compared to uniformly sampling over the entire scene re-
gion. Sampled camera poses are normalized and expressed
relative to the camera pose in the middle of the trajectory.
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Figure 1: Locally conditioned radiance field network.
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Figure 2: Refinement block. Feature maps pass through the
left path, while RGB images pass through the right path.
The input to the right path is not applied for the first refine-
ment block after the volumetric rendering step.

This normalization enforces an egocentric coordinate sys-
tem whose origin is placed at the center of W. Note that de-
spite working with trajectories of multiple camera poses, we
still only sample a single camera pose per generated scene
during training.
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Figure 3: Residual block.

Activation Output Shape
Input RGB-D - 4 x 64 x 64
Conv (3 X 3) LeakyReLU (0.2) 64 x 64 x 64
Residual Block  LeakyReLU (0.2) 128 x 32 x 32
Residual Block  LeakyReLU (0.2) 256 x 16 x 16
Residual Block  LeakyReLU (0.2) 512 x 8 X 8
Residual Block  LeakyReLU (0.2) 512 x4 x4
Minibatch stdev - 513 x4 x4
Conv (3 X 3) LeakyReLU (0.2) 512 x 4 x 4
Flatten - 8192
Linear LeakyReLU (0.2) 512
Linear - 1

Table 3: Discriminator architecture.

Activation Output Shape
Input Feature Map - 512 x4 x4
ConvTranspose (3 x 3) LeakyReLU (0.2) 256 x 8 X 8
ConvTranspose (3 X 3) LeakyReLU (0.2) 128 x 16 x 16
ConvTranspose (3 x 3) LeakyReLU (0.2) 64 x 32 x 32
ConvTranspose (3 x 3) LeakyReLU (0.2) 32 x 64 x 64
Conv (3 X 3) - 4 x 64 x 64

Table 4: Decoder architecture

1.7. Training Details

We use the RMSprop [5] optimizer with a¢ = 0.99,
¢ = 1078, and a learning rate of 0.002 for both the genera-
tor and discriminator. Following StyleGAN [&], we set the
learning rate of the mapping network 100X less than the rest
of the network for improved training stability. Equalized
learning rate [7] is used for all learnable parameters, and
an exponential moving average of the generator weights [7]
with a decay of 0.999 is used to stabilize test-time perfor-
mance. Differentiable data augmentations [2 1] such as ran-
dom translation, colour jitter, and Cutout [4] are applied to
all inputs to the discriminator in order to combat overfitting.
To save compute, the R1 gradient penalty is applied using

a lazy regularization strategy [9] by applying it every 16 it-
erations. We set Ag; to 0.01 and Agecon, to 1000 for all
experiments.

All 64 x 64 resolution models used for the generation
performance evaluation (GSN and otherwise) were trained
for 500k iterations with a batch size of 32. Training takes
4 days on two NVIDIA A100 GPUs with 40GB of memory
each. Mixed precision training is applied to the generator
for a small reduction in memory cost and training time. We
do not apply mixed precision training to the discriminator
as training stability decreases in this case.

2. Inverting GSN for View Synthesis

In order for GSN to deal with the view synthesis prob-
lem we follow common practices for GAN inversion [ 18],
adopting a hybrid inversion approach where we first train
an encoder Ey, : R3*wxh x GF(3) —y ReXsXsxs
on {(X, T,W);}i—1., tuples sampled from a trained GSN
(trained on the training set of the same dataset). The goal
of this encoder is to predict an initial grid of latent codes
W given a set of posed views. Our encoder is concep-
tually similar to [6, 12] where views X are first processed
with a backbone (UNet [15] with a ResNet-50 encoder in
our case) and the resulting feature maps are back-projected
using camera poses T into a shared feature volume V €
Rexsxsxs - Finally, we perform average pooling over the
height dimension of V to get Wy € R*#**_ We train the
encoder by minimizing the following reconstruction loss:

LX,T,W;05) = |W — By, (X,T)|2 + ()
+HIX = f(Eop (X, T), T)][2, (5)

where the first term encourages the reconstruction of the
local latent grid, and the second term encourages samples
from locally conditioned radiance field f to match the orig-
inal input views.

At inference time, given a trained encoder Ejp,,, we feed
the source views S = {(X, T); };=¢—5.+ through our encoder
to predict an initialization latent code grid Wy that we then
optimize via SGD for 1000 iterations to get W. Given that
scenes do not share a canonical orientation, we predict W
at multiple rotation angles of {T; };—;_5.: about the y—axis
to find the generator’s preferred orientation and use this ori-
entation during optimization (note that relative transforma-
tions between camera poses do not change with this global
transformation). We define the preferred orientation as the
one that minimizes an auto-encoding LPIPS loss [20]. The
optimization process is performed by freezing the weights
of fp, and computing a reconstruction loss w.r.t. . We then
use W in the locally conditioned radiance field and render
observations using the camera poses of S to produce S Ge.
to auto-encode source views), while also rendering from the



camera poses of the target views 7 to produce T (ie. to
predict unseen parts of the scene). Future work will explore
in depth how to improve the quality and efficiency of the
inversion approach for GSN-based models where the gen-
erative model tends to prefer a certain orientation. In Fig. 4
we show qualitative results for view synthesis on Vizdoom
on held out sequences not seen during training. We can see
how GSN learns a robust prior that is able to fill in the scene
with plausible completions (e.g. row 5 and 8), even if those
completions do not strictly minimize the L1 reconstruction
loss.

In addition, Fig. 5 shows qualitative view synthesis re-
sults on the Replica dataset [17], showing the applicability
of GSN for view synthesis on realistic data. In this experi-
ment we follow the settings described for Vizdoom in terms
of S and 7. In Fig. 5 the top 3 rows show results on data
from the training set (e.g. scenes that were observed during
training) and the bottom 3 rows show test set results (e.g. re-
sults on unseen scenes). We can see how GSN successfully
uses the prior learned from training data to find a plausible
scene completion for unseen scenes that respects the global
scene geometry.

3. Qualitative Results on Local vs. Global Co-
ordinate Systems

In this section we demonstrate the robustness of GSN
w.r.t. re-arrangement of the latent codes in W. In order to
do so we sample different scenes from our learned prior and
apply arigid transformation to their corresponding W (a 2D
rotation). In principle, this rotation should amount to a rota-
tion of the scene represented by W that does not change the
radiance field prediction. To qualitatively evaluate this ef-
fect we sample different scenes and rotate their correspond-
ing W by {0, 90,180,270} degrees while (i) rotating the
camera by the same amount about the y—axis so that the
rendered image should remain constant and (ii) keeping the
camera fixed so that the scene should rotate. In Fig. 6-7 we
show the result of the setting in (i) for a local and global
coordinate system respectively. In these results we see how
a local coordinate system is drastically more robust to re-
arrangements of the latent codes than a global coordinate
system. In addition, we show results for the setting in (ii)
in Fig. 8-9 for local and global coordinate systems respec-
tively. In this case, we see how given a fixed camera, a
rotation of W amounts to rotating the scene. In this case we
can also see how a local coordinate system results in higher
rendering quality compared to that of a global coordinate
system, which suffers from degradation as the rotation an-
gle increases.

4. Scene Editing

A nice property of the local latent grid produced by GSN
is that it can be used to perform scene editing by directly
altering W. This property allows us a degree of manual
control for scene synthesis beyond what we get from ran-
domly sampling the generator. While the low resolution of
W used in current models currently limits us to high level
scene modifications, training with larger local latent grids
could allow for more fine-grained control over scenes, such
as rearrangement of furniture.

We find that, as with most image composition opera-
tions, the results of scene editing appear most convincing
when the inputs are well aligned in terms of appearance and
geometry. We demonstrate editing operations by manipu-
lating the codes from single scenes, since we don’t need to
worry about matching appearance and geometry, but multi-
ple scenes could be combined if they were similar enough.
In Fig. 10-11 we manipulate the local latent codes by mir-
roring them along the horizontal axis to produce unique
scenes.

5. Effect of Local Latent Grid Size

In Tab. 5 we investigate the effect of changing lo-
cal latent grid resolution. Changes in latent resolution are
achieved by adding or removing layers from the global gen-
erator. In this setting a grid size of 1 x 1 is equivalent to
GSN + global latents. All models were trained for 125k it-
erations. We observe that performance improves as the size
of the latent grid increases, albeit with diminishing returns.

Gridsize | 1 x1 | 8x8 | 16 x16 | 32 x 32
FID 100.7 | 85.3 80.1 78.3

Table 5: Generation results as a function of grid size. Grid
size of 1 x 1 is equal to GSN+global latent.

6. Implicit Upsampling

A nice property of implicit scene representations (such
as NeRF) is the ability to render images at arbitrary res-
olutions, even those larger than observed in training. We
demonstrate this property in GSN by generating 256 x 256
resolution images from a model trained at 128 x 128 reso-
lution (Fig. 12). The implicit representation excels at pre-
serving sharp edges, however, it seems incapable of filling
in the accompanying textural details as it has never seen
images at the higher resolution before. As a result, the final
higher resolution outputs may appear somewhat flat in their
textures.



Figure 4: Qualitative view synthesis results on Vizdoom sequences not seen during training. Given source views S we invert
GSN to obtain a local latent code grid W, which is then use both to reconstruct S, denoted as S , and also to predict target
views 7 (given their camera poses) which are denoted as 7. Each row corresponds to a different set of source views S.
Frames highlighted in green are input to GSN, frames highlighted in blue are predictions.

Figure 5: Qualitative view synthesis results on Replica. Given source views S we invert GSN to obtain a local latent code
grid W, which is then use both to reconstruct S, denoted as S, and also to predict target views 7 (given their camera poses)
which are denoted as 7. Each row corresponds to a different set of source views S (top 3 rows are scenes from the training
set, bottom 3 rows are scenes in a heldout test set). Frames highlighted in green are input to GSN, frames highlighted in blue

are predictions.

7. Generating Novel Scenes

GSN is able to model the distribution of scenes in
smaller datasets well, but due to the limited variety in these
datasets the synthesized scenes do not differ much from
those present in the training set. Ideally, we would like

to be able to generate completely novel scenes. In or-
der to demonstrate that GSN extends to larger datasets, we
train our model on 30 scenes sampled from the Matterport
dataset [3]. In Fig. 13 we present some novel scenes gen-
erated by GSN as well as the pixel-wise nearest neighbours



Figure 6: Change in generation output as local latent codes are rotated with a local coordinate system for two different scenes.
(Top) Rendered image. (Middle) Residual w.r.t. O degree rotation. (Bottom) Visualization of W. Each column corresponds
to a rotation of the camera and W in {0, 90, 180, 270}.
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Figure 7: Change in generation output as local latent codes are rotated with a global coordinate system. (Top) Rendered
image. (Middle) Residual w.r.t. O degree rotation. (Bottom) Visualization of W. Each column corresponds to a rotation of
the camera and W in {0, 90, 180, 270}.

from the training set. We observe minimal overlap between
the generated images and the nearest neighbours, suggest-
ing that the model is capable of producing unique scenes
when exposed to larger amounts of diverse data.

8. Qualitative Comparison of Models

In Fig. 14 we visually inspect the effects of different
architectural design decisions. Pi-GAN [2] uses a global
latent code and modulated linear layers with sinusoidal ac-
tivations in its radiance field network. This model failed to
fully converge in our setting, resulting in scenes with mono-

tone colours and incorrect scene geometry. GRAF [16] also
uses a global latent code, but is conditioned with concate-
nation instead of modulation. GRAF generates scene with
reasonable appearance and geometry, although some arti-
facts are still present. GSN + global latent code is similar in
construction to GRAF, but with modulated linear layers as
conditioning instead of concatenation. Similar to GRAF, it
generates a diverse set of scenes, but they still contain some
artifacts. Replacing the global latent code in GSN for the
local latent code resolves the issue with sporadic artifacts,
resulting in clean generated scenes.
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Figure 8: Change in generation output for a fixed camera as local latent codes are rotated with a local coordinate system for
two different scenes. (Top) Rendered image. (Bottom) Visualization of W. Each column corresponds to a rotation of W in

{0,90, 180, 270}
‘ v
1% .ﬁL

=4,
BNE S

Figure 9: Change in generation output for a fixed camera as local latent codes are rotated with a global coordinate system for
two different scenes. (Top) Rendered image. (Bottom) Visualization of W. Each column corresponds to a rotation of W in
{0,90, 180, 270}.
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Figure 10: Panoramas and corresponding local latent codes
for scenes produced by GSN. Mirroring the local latent code
from a single room (top row) produces a new room (bottom
IrowW).

Figure 11: Panoramas and corresponding local latent codes
for scenes produced by GSN. Mirroring the local latent code
from a single room (top row) produces a new room (bottom
IOW).



Figure 12: High resolution samples (256 x 256) implicitly upsampled from model trained at 128 x 128 resolution. The model
preserves sharp edges during upsampling, but cannot resolve higher fidelity textures. Zoom for details.
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Figure 13: GSN samples (64 x 64 resolution) from model trained on a subset of Matterport dataset, with top-3 pixel-wise

nearest neighbours from training set.

Figure 14: Qualitative comparison of different model architectures at 64 x 64 resolution. GSN+global is equivalent to a
GRAF model with modulated linear layers. GSN+local indicates the full model, with modulated linear layers, local latent
grid, and local coordinate system. GT indicates ground truth images from the training set.
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