
Appendix
The supplementary materials include
• Appendix A: Full algorithmic formulation of CoPE.
• Appendix B: Setup details with all hyperparameters for reproducibility.
• Appendix C: Resource analysis of CoPE compared to other data incremental replay methods.
• Appendix D: Extended ablation study of prototype momentum and the PPP-loss components with t-SNE visualization.
• Appendix E: Additional experiments in low capacity benchmarks Split-MNIST-mini and Split-CIFAR10-mini.

A. Algorithm
Our proposed algorithm is fully formalized in this section, as well as in our code that will be made publicly available

on acceptance of this paper. Algorithm 1 and Algorithm 2 describe the learner for CoPE, whereas the evaluator uses
c∗ = argmaxc∈Y fTi pc, classifying xi as category c∗ with the most similar prototype pc

∗
. As for a true continually

progressing system, the evaluator can urge prediction at any point in time, while the learner keeps acquiring knowledge from
the data stream.

Algorithm 1 The CoPE learner in the data incremental learning setup.
Require: data stream S, prototype momentum α, memory capacity M , learning rate η
Initialize operational memoryM = ∅, observed classes Y = ∅, sample count per class N = ∅, model parameters θ

1: for Bn = {(x1,y1), ..., (x|Bn|,y|Bn|)} ∼ S do . Data stream batch w/o task information
2: BM ← RANDOMSAMPLE(Mr, |Bn|) . Randomly sample |Bn| exemplars fromMr

3: B = ∅
4: for (xi,yi) ∈ Bn ∪BM do
5: if yi /∈ Y then
6: INITCLASS(M, N,Y, yi) . Initialize memory and prototype
7: end if
8: B ← B ∪ fθ(xi) . Collect features
9: end for

10: L ← 0 . Initialize loss
11: for f ci ∈ B do
12: L ← L− 1

|B|

[
logP (c|xci ) +

∑
xk
j
log(1− P (c|xkj ))

]
. Sum al instances PPP-loss

13: end for
14: θ ← θ + η ∇L . Optimize objective with SGD
15: PROTOTYPEUPDATE(Mp,B, N, α) . Update prototypes inMp

16: MEMORYUPDATE(Mr, Bn, N) . Update memoryMr with new input samples
17: end for



Algorithm 2 Memory Management of the replay memory and prototypes. UNIFORMRd

(s1, s2) samples elements in a
d-dimensional vector with uniform probability in range [s1, s2] ∈ R.
Require: memory capacity M

1: function INITCLASS(M, N,Y, y)
2: N ← N ∪ {Ny = 0} . Sample counts
3: Y ← Y ∪ {y} . Observed classes
4: m =M/|Y| . Capacity per class
5: forMc

r = (x1, ...,x|Mc
r|) ∈Mr do

6: Mc
r ← (x1, ...,xm) . Keep first m

7: end for
8: M←M∪ {My = ∅}
9: py ← UNIFORMd(0, 1)

10: My
p ← {py/||py||2} . Init prototype

11: end function

1: function PROTOTYPEUPDATE(Mp,B, N, α)
2: for pc ∈Mp do
3: N c ← N c + |Bc|
4: p̄c = 1

|Bc|
∑

fc∈Bc f c

5: pc ← αpc + (1− α)p̄c

6: pc ← pc/||pc||2 . Normalize
7: end for
8: end function
9: function MEMORYUPDATE(Mr, Bn, N )

10: for xci ∈ Bn do . Class Reservoir
11: j = UNIFORMN1

(1, N c)
12: if j ≤ |Mc

r| then
13: Mc

r [j]← xci . Replace exemplar
14: end if
15: end for
16: end function

B. Setup
A gridsearch in the online continual learning setup was adopted, selecting the setup with highest performance, similar to [5].

All methods are prone to learning rate gridsearch [0.05, 0.01, 0.005, 0.001]. iCaRL knowledge distillation strength is set to 1,
and GEM bias is set to 0.5, following [5, 8, 2]. GSS and MIR follow their original setup from their codebase in [2] and [1],
with our additional learning rate gridsearch. CURL [7] and DN-CPM [4] results, and the best imbalanced Split-MNIST results
out of the greedy/IQP versions for GSS [2] are reported from their original works. CoPE searched for a suitable temperature
τ = [0.1, 0.2, ..., 1, 2] which was set to 0.1 for all balanced and imbalanced Split-MNIST and Split-CIFAR10 experiments,
similar to [9]. Based on the ablation study in Appendix D, we set the prototypical momentum fixed to 0.99. For the challenging
Split-CIFAR100 setting methods are allowed multiple iterations per batch as in [5], from which the best results are selected
(baselines, reservoir, CN-DPM perform 1 iteration, others 5). The CIFAR100 temperature required higher concentration with
τ = 0.05 and prototypical momentum 0.9. For the balanced setups, the latent dimensionality d is fixed to 100 for Split-MNIST
as in [7], and selected 256 in a gridsearch [128, 256] and [128, 256, 512] for Split-CIFAR10 and Split-CIFAR100 respectively.
The imbalanced benchmarks follow the low capacity setup in Appendix E.1, with d ∈ [16, 32, 64] set to 64 for Split-MNIST
and d ∈ [128, 256] set to 128 for Split-CIFAR10 and 256 for Split-CIFAR100, with |Mr| set to 0.3k, 1k and 5k respectively.
We found slightly better results without L2 re-normalization of the prototypes. The CIFAR10 labels in the confusion matrices
from 0 to 10 stand for the indices in the following list: [airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck].
Code is publicly available to ensure reproducibility.

C. Resource analysis data incremental replay methods
In this section we compare usage of computational and memory resources for the replay methods fitted for the task-free

online data incremental learning paradigm.
Reservoir is a powerful baseline for balanced data streams [3], with only minimal computational cost by keeping count

n of how many samples have been observed. This count is then used relative to the buffer size M to define the probability
M/n to store the new sample. As shown in the imbalanced data stream experiments, Reservoir is not fit for more real-world
scenarios with typically varying frequency of occurrence per class. Improving this simple experience replay has led to research
focusing on more complex strategies, discussed in the following.

MIR [1] replaces the random retrieval from the buffer in Reservoir with a loss-based approach. They store a momentary
update of the network optimized for the new incoming batch and calculate the change in loss for a random subset of replay
memories B̃, which is larger than the batch size (ideally five times the batch size for their experiments [1]). Besides a copy of
the full model, this also requires calculating the loss twice in a sequential manner for the full subset B̃ and an extra temporary
model update using only the new batch Bn, both significantly increasing processing time for the learner.

GSS [2] resides with Reservoir to use random retrieval of the buffer, but proposes a gradient-based population strategy.



They introduce two variants, in which the first solves an Integer Quadratic Problem (IQP) with polynomial complexity
w.r.t. the replay memory. As this is not scalable, they also propose a stochastic GSS-greedy variant. This more efficient
GSS-greedy approach requires an additional forward pass, loss calculation, and backwards pass to obtain the gradients for the
full considered subset B̃ in the memory. Additionally, it uses similarities of the gradients for stochastic sample selection in the
replay memoryMr, straining memory requirements as batch Bn requires for each sample |B̃|+ 1 gradients to be accessed
simultaneously to calculate |B̃| cosine similarities in the high-dimensional gradient-space.

CoPE (ours) resembles Reservoir’s memory population by keeping count of the samples per class-specific replay memory
subset. The PPP-loss requires calculation of a similarity matrix with all the d-dimensional representations in the batch B.
Using a normalized cosine similarity, this implies efficient matrix multiplication with the low-dimensional vectors. This is in
high contrast to GSS, which calculates cosine similarity in the full high-dimensional gradient space for additional samples that
are not present in current batch B, and therefore requires additional costly forward and backward passes. Furthermore, in our
prototypical approach the prototype momentum updates also rely solely on samples that are in the current batch B, hence
requiring only minimal additional computation. Comparing to both MIR and GSS, we don’t require storing model copies
or additional gradients, but merely store low-dimensional prototypes for each class, saving a significant amount of required
storage space. For example, a Resnet18 model requires 11.7 million parameters to enable model copies or gradients, whereas
our method even for 1000-way classification with d = 1024 would require only 9% of the model capacity in memory for the
prototypes. Note that new categories require an additional prototype, which would be the same size of the weight vector of an
additional output unit in a linear classifier. However, in this work we consider the features on the level of the output space.
Therefore, additional d-dimensional prototypes are stored, but as mentioned in the previous example, these are limited in size
and the set of categories is typically limited as well.

D. Extended ablation study
D.1. Ablation prototype momentum

In all experiments, a high momentum is employed to update prototypes with the latent mean of the batch. Table 1 illustrates
the influence of higher momentum (≥ 0.9). Compared to low momentum of 0.1, Split-MNIST only gains a small margin of
0.45%, whereas Split-CIFAR10 and Split-CIFAR100 significantly improve with at least 3.0% and 4.2% respectively. Using
momentum prevents the prototype to rely solely on the current batch instances, and higher momentum values attain a more
gradual change of the prototypes by stabilizing its trajectory in the ever-evolving latent space.

Prototype Momentum

0.1 0.9 0.95 0.99
Split-MNIST 93.49± 0.70 94.11± 0.34 93.96± 0.30 93.94± 0.20
Split-CIFAR10 44.48± 3.19 48.02± 2.49 47.98± 3.14 48.92± 1.32
Split-CIFAR100 15.79± 1.16 21.62± 0.69 21.56± 0.58 20.01± 1.81

Table 1: Ablation study changing momentum strength for prototype updates, reported in average accuracy (%) over 5
runs. Higher momentum values (≥ 0.9) obtain better performance, especially for the CIFAR sequences, compared to low
momentum (0.1).

D.2. Ablation inter and intra-class variance terms PPP-loss

In this section, the importance is scrutinized of the two loss components to enhance inter and intra-class variance in the
PPP-loss. Table 2 compares using only positive pairs from the batch in the attractor (Lpos) or only negative pairs in the
repellor (Lneg) to the full-fledged PPP-loss (L). The attractor term shows competitive performance to the full PPP-loss for
Split-MNIST, but deteriorates as the data streams become harder for the CIFAR setups. The repellor term is on par with the
full PPP-loss for Split-MNIST and Split-CIFAR10, but collapses for Split-CIFAR100. The latter is challenging due to the high
number of classes with only a batch size of 10, which impedes having pseudo-prototypes of all classes in the same batch. The
PPP-loss incorporates both reduction of intra-class variance with the attractor term and increases inter-class variance with the
repellor term, attaining state-of-the-art performance.

Besides isolating the attractor and repellor terms of the PPP-loss in the ablation study, we further investigate the weighing
of the two terms during the lifetime of the learner in Figure 1. We average results over 5 runs for balanced Split-MNIST,



finding the repellor to dominate. This trend is to be expected as the repellor term has per instance a summation over all other
class instances. The attractor term has minimal influence especially for data presented for the first task. This indicates the
samples in the binary latent space (having observed only two classes) majorly repelling rather than attracting samples. The
embedding network is still learning the initial features, and overlap in the two latent class distributions summed over the other
class samples results in a prevailing repellor term.

PPP-loss

L Lpos Lneg
Split-MNIST 93.94± 0.20 93.25± 0.22 93.84± 0.48
Split-CIFAR10 48.92± 1.32 30.96± 3.58 49.30± 3.57
Split-CIFAR100 21.62± 0.69 15.85± 0.34 9.43± 0.94

Table 2: Ablation using solely the attractor (Lpos) or repellor (Lneg) compared to using both terms in the PPP-loss (L).
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Figure 1: Weighing (%) between the attractor loss term Lpos compared to the full PPP-loss L, averaged over 5 runs of
balanced Split-MNIST with standard deviation in blue.
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Figure 2: Split-MNIST first seed t-SNE representation of the test data Seval, including (a) and excluding (b) the pseudo-
prototypes p̂ in the PPP-loss.



D.3. Pseudo-prototype ablation visualization

In the main paper we find in an ablation study that using pseudo-prototypes p̂ as proxy for the class-mean has significant
improvements for the PPP-loss. Additionally, Figure 2 shows this in a 2-dimensional t-SNE [6] space for the first seed of
the balanced Split-MNIST experiment. Including the pseudo-prototypes (incl. p̂) illustrates a striking degree of inter-class
variance in Figure 2a, whereas more interference occurs when excluding the pseudo-prototypes in Figure 2b. This is reflected
in the performance, as including prototypes results in 94.52% accuracy, whereas excluding them has only 90.86% for the first
seed.

E. Additional experiments
E.1. Balanced data streams with low capacity

In these experiments we scrutinize performance of CoPE with less capacity in the memory and model, and with shorter
data streams. All methods are allowed multiple iterations (maximal 5) as in [2]. Results are averaged over 5 seeds. Similar to
the setup of GSS [2], we adopt two data sequences with truncated data per task:

• Split-MNIST-mini is similar to the Split-MNIST data stream with 5 tasks, but each task is confined to 1k training
samples. Evaluation considers the full test subset. The network is an MLP with two hidden layers of 100 units, with
total memory size of 0.3k exemplars. Latent dimensionality d is selected 32 from [16, 32, 64].

• Split-CIFAR10-mini is similar to the Split-CIFAR10 data stream with 5 tasks, but each task comprises 2k training
samples, with a total subset of 10k samples out of the 50k available. The full test subset is used for evaluation. The
network used is the same ResNet18 as in the main paper, with total memory size of 1k exemplars. Latent dimensionality
d is selected 128 from [128, 256].

Analysis. Table 3 shows the results for Split-MNIST-mini and Split-CIFAR10-mini, with GSS and DN-CPM results reported
from their original works in a corresponding setup. In Split-MNIST-mini our method approaches the iid-online baseline up
to 1%, and outperforms its closest competitors GEM and MIR with at least 1.45%. In Split-CIFAR10-mini CoPE saliently
surpasses the iid-online baseline with 2.25%, hence outperforming online training over an iid datastream. Moreover, CoPE
surpasses CN-DPM by 3%. Reservoir proves a strong baseline, with in this case the additional MIR loss-based retrieval
decreasing performance. Similar to our findings in the main paper and [1, 2], GEM encounters difficulties in a CIFAR10 based
setup, for which we find the bias hyperparameter γ ≥ 0 in the gradient projection to have insignificant influence. These results
confirm CoPE outperforming both GSS and CN-DPM in this low capacity setting established in their original work.

Split-MNIST-mini Split-CIFAR10-mini

iid-offline 94.58± 0.17 67.41± 1.37
iid-online 87.57± 3.54 42.50± 2.15

finetune 21.74± 3.38 16.65± 0.24
GEM 85.09± 0.52 22.31± 1.37
iCaRL 83.23± 0.92 26.54± 2.73
DN-CPM [4] − 41.78
reservoir 82.73± 2.39 38.21± 3.39
MIR 84.40± 0.91 37.20± 2.74
GSS [2] 82.60± 2.90 33.56± 1.70
CoPE 86.54± 1.41 44.75± 2.68

Table 3: Split-MNIST-mini and Split-CIFAR10-mini results, with respectively only 1k and 2k samples per task. GSS and
DN-CPM results reported from original work in these setups.

E.2. Imbalanced Benchmark Results

The graphs in the main paper visualize the numbers in Table 4, which we fully report here as a reference for future work.
Each S(Ti) data stream performance is averaged over five different initial seeds. The ’Avg.’ results average over all mean
performances of the dataset variants S(Ti).



Dataset Imbalanced
Sequence CoPE CoPE-CE GSS MIR Reservoir

Split-MNIST S(T1) 83.4± 2.0 81.8± 1.2 75.9± 3.2 64.8± 5.1 64.2± 2.3
S(T2) 84.5± 1.6 80.1± 1.9 78.5± 2.7 67.4± 3.2 65.5± 4.6
S(T3) 85.1± 0.6 79.6± 2.0 81.5± 2.3 72.4± 3.0 72.1± 4.0
S(T4) 84.8± 1.0 80.0± 3.1 79.5± 0.6 72.6± 3.1 73.6± 2.4
S(T5) 84.0± 1.3 80.7± 1.8 79.1± 0.7 77.2± 3.4 73.2± 4.0

Avg. 84.4± 0.7 80.4± 0.9 78.9± 2.0 70.9± 4.9 69.7± 4.5

Split-CIFAR10 S(T1) 39.0± 1.3 36.4± 3.0 32.3± 3.0 32.6± 3.6 35.5± 3.4
S(T2) 35.3± 2.6 34.1± 2.8 28.3± 0.4 27.2± 1.8 29.3± 2.8
S(T3) 36.2± 2.5 34.6± 2.5 29.5± 1.5 29.6± 2.1 31.4± 2.1
S(T4) 39.1± 2.4 33.5± 4.2 34.6± 1.3 31.0± 2.3 32.1± 0.6
S(T5) 37.3± 3.3 33.9± 2.9 28.3± 2.4 27.6± 2.7 28.8± 1.9

Avg. 37.4± 1.7 34.5± 1.1 30.6± 2.8 29.6± 2.3 31.4± 2.7

Split-CIFAR100 S(T1) 18.2± 0.6 11.7± 0.6 10.2± 0.8 18.4± 0.9 11.1± 0.6
S(T5) 18.5± 1.3 12.6± 1.2 10.7± 0.5 17.6± 0.9 11.5± 1.4
S(T10) 19.2± 0.9 11.1± 0.7 11.1± 0.3 17.8± 0.7 11.9± 0.7
S(T15) 18.7± 0.6 11.2± 0.8 11.1± 0.9 17.8± 0.9 12.1± 0.8
S(T20) 18.5± 1.5 12.8± 1.3 11.1± 0.4 17.6± 0.4 12.5± 1.1

Avg. 18.6± 0.4 11.9± 0.8 10.8± 0.4 17.8± 0.3 11.8± 0.5

Table 4: Numeric results for imbalanced Split-MNIST, Split-CIFAR10 and Split-CIFAR100 sequences.
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