
MG-GAN: Supplementary Material

Patrick Dendorfer* Sven Elflein* Laura Leal-Taixé
Technical University Munich

{patrick.dendorfer,sven.elflein,leal.taixe}@tum.de

Abstract

The supplementary material complements our work with
the implementation details of MG-GAN in Appendix A.
Furthermore, we provide details on the training procedure
and additional experiments on the hyperparameters of MG-
GAN in Appendix B. In Appendix C, we explain how we
compute Precision and Recall and describe the synthetic
dataset in Appendix D. We discuss the performance of MG-
GAN on real-world datasets in Appendix E. Lastly, we in-
vestigate the benefits of multi-generator models in learn-
ing distinct modes on a toy dataset in Appendix F and add
visualizations of predicted trajectories on the considered
datasets in Appendix G.

A. Architecture
The main contribution of our method is the use of multi-

ple generators and the proposed Path Mode Network (PM-
Net). The architecture of the individual generators is a stan-
dard Long Short-Term Memory (LSTM) encoder-decoder
model [1] with social and physical attention as proposed
in [11, 2]. The entire model is trained in a GAN frame-
work and uses a discriminator and additional classifier that
encourages the generators to specialize to a specific mode.

In the following paragraphs, we describe the architecture
of all our components to generate a set of K future trajecto-
ries {Ŷ k

i }k=1,...,K with t 2 [tobs + 1, tpred] given the input
trajectory Xi with t 2 [t1, tobs] for each pedestrian i. The
source code of our model is provided with the supplemen-
tary material.

A.1. Encoding
To extract dynamic features from the past trajectory of a

pedestrian i in a scene, we use an LSTM [6] to encode the
relative displacements �Xi into a high dimensional feature
representation di

di = LSTMen

�
�X

t
i , h

t
i

�
,

*Equal contribution.

where h
t
i is the hidden state of the LSTM. We compute vi-

sual features fi with a CNN for an image patch Ii cut around
the last observed position of pedestrian i

fi = CNN (Ii) .

The image patch Ii is a 32 ⇥ 32 pixel patch with a res-
olution of 0.7m/pixel. The CNN has 2 layers with 16 fil-
ters, kernel size 3, max-pooling and ReLU activations and
is trained from scratch.

The scene layout as well as other interacting pedestrians
affect the path of a pedestrians and have to be considered
by the model. For our method, we model physical (agent-
scene) and social (agent-agent) interaction with correspond-
ing soft-attention modules [13], following [11, 2].

Social Attention [2]: To account for social interaction,
we apply soft-attention on the hidden states {dj}j2J of the
other pedestrians in the scene where we compute the atten-
tion score aij based on the distance and the bearing angle
between the agent i and a neighbouring agent j. The social
information for pedestrian i is then defined as

si =
X

j2J

aijdj (1)

Physical Attention [11]: The interaction with the scene
around a pedestrian is also modeled with a soft-attention
network [13] ATT applied on the CNN features fi based
on the motion encoding di. Thus, the physical features vi

are given by

vi = ATT (fi, di) (2)

Final Encoding. Finally, the dynamic features di, social
features si, and physical features vi are concatenated to
form the conditional encoding ci for pedestrian i which is
used for generating predictions in the following. All vectors
di, vi, and si have length 32.

A.2. Generator

For MG-GAN, we propose nG individual generators g.
Each generator consists of an LSTM decoder, initialized
with the encoded features c and combined with a random
noise vector z ⇠ N (0, 1) as the initial hidden state h0. The
final trajectory Ŷ is predicted recurrently:

�Ŷ
t = LSTMg

⇣
�Ŷ

t�1
, h

t�1
⌘
, (3)

where �Ŷ
tobs is initialised with the last displacement of the

observation �X
tobs .

A.3. Path Mode Network (PM-Net)

The Path Mode Network ⇧(ci) outputs a probability ⇡
over the generators conditioned on the encoded features ci
for a pedestrian i. The network consists of a 3-layer Multi-
Layer Perceptron (MLP) with ReLU activations and the hid-
den dimension of size 48 and computes the final distribution
over generators with a Softmax layer.

A.4. Discriminator and Classifier

Our model is trained in a GAN framework using a dis-
criminator D and classifier C. Both networks use shared
weights to encode the scene and trajectory mirroring the
generator architecture described in Appendix A.1 to obtain
the encoding c for a pedestrian. Additionally, we encode ei-
ther the predicted or ground-truth trajectory, Y or Ŷ respec-
tively, with a two-layer MLP and concatenate with c to ob-
tain the input for the two separate branches of the discrim-
inator D and classifier C. Both use a two-layer MLP and
produce the probability of the trajectory being real through
a Sigmoid activation (Discriminator) or a distribution from
which generator the trajectory was sampled from a Softmax
activation (Classifier). Unless otherwise specified, we use
LeakyReLU activations with a slope of 0.2 across the mod-
ule.

B. Training MG-GAN
To train MG-GAN, we present an alternating training

scheme as is explained in Algorithm 1. The proposed train-
ing scheme optimizes the generators and PM-Net in the
model. During the training, we first optimize PM-Net based
on the approximated likelihood of the generated trajectories
by evaluating l samples each. In the second step, we sam-
ple q trajectories from the generator and apply the adver-
sarial loss, best-of-many loss, and classification loss to the
trajectories. In this Section, we provide additional infor-
mation on the derivation of the PM-Net training objective
(Appendix B.1) and discuss the effect of hyperparameters
for the training (Appendix B.2).

B.1. PM-Net Objective
To estimate probabilities of trajectories, we assume nor-

mal distributed errors of the ground-truth pY = Y +
N(0,�I) = N(Y,�I). Thus, we can define the proba-
bility of a prediction Ŷ as p(Ŷ |c, z, g) = pY (Ŷ) where
z ⇠ N(0, I) is the GAN noise distribution, c the encoded,
conditional scene information and g the generator index.
Using symmetry of the Normal distribution and marginaliz-
ing z through l Monte Carlo samples {z(i)}li=1, the likeli-
hood of the ground-truth trajectory Y can be written as

p(Y |g, c) =
Z

p(Y |g, z, c)dz

⇡ 1

l

lX

i=1

p(Y |c, z(i), g)

⇡ 1

l

lX

i=1

N (Y ; Ŷc,z(i),g,�I)

/⇠
1

l

lX

i=1

exp

0

B@
�
���Ŷg,c,zi � Y

���
2

2

2�

1

CA . (4)

By applying Bayes’ rule, one obtains the posterior distribu-
tion over generators

p(g|Y, c) = p(Y |c, g)p(g|c)
p(Y |c)

=
p(Y |c, g)p(g|c)P
g p(Y |g, c)p(g|c) .

We use a non-informative, uniform prior distribution over
generators p(g|c) = 1/nG as we do not have knowledge
which generator is relevant for a given scene context c at
the start of training. Overall, we obtain

p(g|Y, c) = p(Y |c, g)P
h p(Y |h, c) (5)

which can be computed using the approximation of Equa-
tion (4) concluding our derivation.

As described in the main paper, we train PM-Net by min-
imizing the Cross-Entropy between the approximated distri-
bution over generators in Equation (5) which we derived in
this section and the output distribution ⇧(c) produced by
PM-Net.

B.2. Hyperparameters
For optimization, we use the Adam [7] optimizer with

learning rate 0.001, �1 = 0.5 and �2 = 0.999. We set the
number of G training samples q = 20 and PM-Net training
samples l = 1. Further, we set the weighting coefficients
�Traj ,�Cl, and the standard deviation � to 1. We study dif-
ferent settings of the hyperparameters specific to our model
on the synthetic dataset in the following.

Table 1: Results of MG-GAN (nG = 5) trained with differ-
ent values for �Traj and �Cl.

�Traj �Cl ADE FDE Precision Recall

0.1 0.1 0.37 0.46 0.60 0.80
0.1 1.0 0.36 0.44 0.64 0.80
0.1 5.0 0.34 0.44 0.68 0.82

1.0 0.1 0.35 0.46 0.73 0.86
1.0 1.0 0.33 0.44 0.71 0.90
1.0 5.0 0.32 0.45 0.76 0.94

5.0 0.1 0.32 0.46 0.80 0.92
5.0 1.0 0.30 0.44 0.81 0.97
5.0 5.0 0.32 0.45 0.79 0.93

Effect of Loss Weighting. Results for different settings
of �Traj , weighting the L2 best-of-many loss [3, 4] loss
term LTraj , and �Cl, weighting the classifier loss term LCl,
can be found in Table 1. We observe that higher settings of
�Traj help slightly to improve ADE, Precision, and Recall.
A higher �Traj enforces that at least one generated sample
is close to the ground-truth trajectory reducing ADE and
increasing Recall. Additionally, it enforces further special-
ization of the generators as the LTraj loss only applies to
the closest sample that always comes from the same gener-
ator when they already cover distinct modes. As a result, we
find that �Cl does not affect the results significantly since it
encourages the generators to be distinguishable. If the clas-
sifier drives the generators to cover distinct modes already
in the early stages of training, the loss is small and has little
influence during the remaining training independent of the
weighting.

Effect of � for PM-Net Training. The parameter � rep-
resents the standard deviation of the normally distributed
error N (0,�I) in meters around the ground-truth trajectory
Y and shapes the likelihood approximation in Equation (4).
For large � the probability over generators p(g|Y, c) be-
comes uniform in Equation (5) while the probability con-
verges to a one-hot vector for the generator producing the
closest samples to the ground-truth as � ! 0. We find in
Table 2 that the results of MG-GAN are stable w.r.t. reason-
able choices of � indicating that no hyperparameter tuning
on � is necessary in order for MG-GAN to converge to a
correct solution producing high precision.

Effect of the Number of Training Samples. For the
training of MG-GAN we can choose the number of Monte
Carlo samples l used for the likelihood estimation in Equa-
tion (4) and the number of generator training samples q for
computing the L2 best-of-many loss [3, 4] LTraj . In Ta-
ble 3, we find that a single sample q = 1 is not enough to
train a multimodal model, because it still results in a model

Table 2: Results of MG-GAN (nG = 5) trained with differ-
ent values for �.

� ADE FDE Precision Recall

0.1 0.33 0.49 0.77 0.95
0.5 0.38 0.53 0.70 0.89
1.0 0.32 0.44 0.77 0.95
2.5 0.32 0.48 0.80 0.95
5.0 0.34 0.47 0.72 0.90

Table 3: Results of MG-GAN (nG = 5) trained with dif-
ferent number of PM-Net training samples l and generator
samples q.

⇧-Net
Samples l

G Training
Samples q ADE FDE Precision Recall 5

1 1 2.18 4.57 0.31 0.30
1 10 0.46 0.52 0.55 0.66
1 20 0.45 0.57 0.57 0.82
5 1 2.20 4.56 0.33 0.29
5 10 0.46 0.49 0.56 0.68
5 20 0.31 0.45 0.79 0.95

predicting linear straight motion. By increasing q we find
that this model can predict more multimodal trajectories
since the loss is only applied on the sample closest to the
ground truth and the other q � 1 predictions in potentially
other directions are not punished. Increasing the number of
samples l has a positive effect on the performance because
the likelihood estimation becomes more accurate and the
generators can develop the specialization to a specific mode
even further.

C. Definition of Precision and Recall
To measure the performance of models in preventing

out-of-distribution (OOD) samples while covering the en-
tire support of the distribution, we follow the GAN literature
[12, 8] and estimate the manifolds of predicted trajectories
and ground-truth samples to compute Precision and Recall.

For a set of future trajectories � = {�k}, we estimate the
corresponding manifold in the output space by considering
the points of all trajectories {�t

k} at time t (Figure 1a), con-
structing a disc with radius R

t around each point �t
k (Fig-

ure 1b). The R
t represents the maximum distance error we

can accept for the predictions. The union of all disc areas
serves as an estimate of the true manifold (Figure 1c). We
do this for every time t 2 {1, ..., T} and define

R
t =

Rmax · t
T

where we set Rmax = 2m. To determine if a given sample
� lies inside this manifold, we define a binary score func-

(a) (b) (c)

Figure 1: (a) Trajectory endpoints, (b) estimating manifold
through disc around the points with radius R, and (c) testing
if samples � are in estimated manifold.

tion:

score(�,�) =

(
1, if 8t9�0 2 � with k�t � �

0
tk2 R

t

0, otherwise.
(6)

Following the above definition, we construct the manifold
�G based on the set of model predictions �G. Similarly,
we estimate the ground-truth manifold �R using the set of
ground-truth trajectories �R as provided in the FPD [9] and
the synthetic dataset (Appendix D).

Precision and Recall are then defined using Equation (6)
as

Precision =
1

|�G|
X

�2�G

score(�,�R) and (7)

Recall =
1

|�R|
X

�2�R

score(�,�G). (8)

Intuitively, Precision measures the realism of a trajectory
because it queries if the prediction falls inside the ground-
truth manifold. Symmetrically, Recall measures if real sam-
ples lie within the manifold generated by predictions and
thus measures if all modes present in the ground truth are
covered.

D. Synthetic Dataset
In the main paper, we present a synthetic dataset to study

the generated multimodality of the models. We generate the
dataset on the Hyang-4 scene of the SDD [10], as shown
in Figure 2a. This scene is well suited because it provides
separated spatial modes with an upper and lower junction
with two and three modes respectively. We simulate the
dynamics of ⇡ 80, 000 pedestrians using the Social Force
Model [5]. In order to control and limit the modes of fu-
ture trajectories, we use an occupancy map shown in Fig-
ure 2b restricting the area the pedestrians can walk on. In
the dataset, we primarily focus on spatial multimodality and
limit the number of pedestrians to a maximum of two.

E. Multimodality of Real Datasets
In this section, we try to measure the overall multimodal-

ity of or public benchmarks. As we do not have multiple

(a) (b)

Figure 2: Scene image (a) and occupation map (b) of the
synthetic dataset.

Table 4: ADE and FDE results for MG-GAN with different
number of generators on the SDD dataset.

Generators 2 3 4 5

ADE 13.7 14.6 13.6 14.5
FDE 26.1 27.6 25.8 27.6

ground-truth trajectories on these datasets, we consider sim-
ilar trajectories which are (i) in close proximity (closer than
2m), (ii) walk-in similar directions (±45�), and (iii) walk
with similar speed (±0.5m/s). We then filter trajectories if
they collide with other pedestrians in the scene (distance
 0.5m).

Finally, we use the procedure described in Appendix C
to estimate the manifold based on the collected set of tra-
jectories and count the number of disconnected components
across timesteps.

We conclude from Figure 3 that SDD is less multimodal
(Avg. # of modes: 1.15) than the other datasets, i.e., FPD
(Avg. # of modes: 1.36) and UCY/ETH (Avg. # of modes:
1.34). This observation is somewhat congruent with the per-
formance of MG-GAN on the public benchmarks. While
our method achieves state-of-the-art performance on ETH
and UCY which is more multimodal than SDD that natu-
rally makes it hard for our method to show benefits over
existing methods.

We elaborate this further and train the single generator
baseline GAN+L2 with the same backbone on SDD. We
obtain similar results compared to MG-GAN with ADE
of 14.6 and FDE 27.5 as shown in Table 4. These re-
sults further indicate that SDD does not contain sufficient
multi-modality for our method achieving better results than
single-generator methods.

F. Toy Experiment
In addition to the experiments in the main paper, we

study multimodality on a toy dataset introduced in [2].
The data consists of six starting positions equidistantly dis-

Figure 3: Histogram of the estimated, relative number of
modes for the real datasets.

tributed on a circle where we generate three paths with uni-
form probability for each starting position, as shown in Fig-
ure 4a. This experiment demonstrates how different models
represent the multiple modes inside a lower-dimensional la-
tent space. This experiment should give us a deeper under-
standing of the architectural requirements for modeling dis-
tinct modes. For this experiment, all methods use a single
encoder to encode the observation, then an MLP is used to
transform the encoding with the GAN noise z to the three-
dimensional latent space, and a decoder decodes the latent
space to predictions. For MG-GAN, we use separate MLPs
mapping to the latent space resembling the different gener-
ators in our main model.

Results. In Figure 4, we visualize the predictions (left)
and corresponding latent space vectors (right) for the con-
sidered models. The simple GAN baseline fails to recover
all three modes, while training with an additional L2 loss
leads to unrealistic out-of-distribution samples since the
loss encourages the samples to spread over the entire output
space which is also reflected in the latent space. InfoGAN
does not learn to encode different modes inside its categori-
cal values. Ultimately, our multi-generator model covers all
disconnected modes without producing out-of-distribution
samples in between. The different sub-networks learn to
map the different modes in separated areas in the latent
space and hence introduce the required disconnectedness
that allows the prediction of disjoint manifolds. This further
demonstrates the efficacy of multi-generator models com-
pared to single generator models in preventing OOD sam-
ples while covering the entire distribution.

G. Visualizations
We present additional visualizations of generated trajec-

tories of MG-GAN on ETH and UCY in Figure 5, SDD in
Figure 6 and the FPD in Figure 7.

In Figure 8, we explore the latent space of the GAN
baseline and MG-GAN. While a latent space interpolation
results in out-of-distribution samples for the baseline, we

show that each generator is limited to the support of a spe-
cific mode preventing the generation of OOD samples.

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial LSTM: Human trajectory prediction in crowded spaces.
In Conference on Computer Vision and Pattern Recognition,
2016. 1

[2] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. So-
cial Ways: Learning multi-modal distributions of pedestrian
trajectories with GANs. In Conference on Computer Vision
and Pattern Recognition Workshops, 2019. 1, 4

[3] Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Ac-
curate and diverse sampling of sequences based on a “Best of
Many” sample objective. In Conference on Computer Vision
and Pattern Recognition, 2018. 3

[4] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social GAN: Socially acceptable tra-
jectories with generative adversarial networks. In Confer-
ence on Computer Vision and Pattern Recognition, 2018. 3

[5] Dirk Helbing and Péter Molnár. Social force model for
pedestrian dynamics. Physical Review E, 51, 1995. 4

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 1997. 1

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In European Conference on Com-
puter Vision, 2014. 2

[8] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved Precision and Recall
Metric for Assessing Generative Models. In Neural Infor-
mation Processing Systems, 2019. 3

[9] Junwei Liang, Lu Jiang, Kevin Murphy, Ting Yu, and
Alexander Hauptmann. The Garden of Forking Paths: To-
wards Multi-Future Trajectory Prediction. In Conference on
Computer Vision and Pattern Recognition, 2020. 4

[10] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi,
and Silvio Savarese. Learning social etiquette: Human tra-
jectory understanding in crowded scenes. In European Con-
ference on Computer Vision, 2016. 4

[11] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An
attentive GAN for predicting paths compliant to social and
physical constraints. In Conference on Computer Vision and
Pattern Recognition, 2019. 1

[12] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier
Bousquet, and Sylvain Gelly. Assessing Generative Models
via Precision and Recall. In Neural Information Processing
Systems, 2018. 3

[13] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International Conference on
Machine Learning, 2015. 1

(a) GT (b) GAN (c) GAN+L2 (d) InfoGAN (e) MG-GAN

Figure 4: (a) shows the entire toy dataset. Plots (b)-(e) demonstrate predictions for different models and the corresponding
points in the latent space for the observation in the red box (a). Samples from different discrete latent codes or generators are
visualized in different colors.

Figure 5: Generated samples of MG-GAN on the ETH and UCY dataset

Figure 6: Generated samples of MG-GAN on the Stanford Drone Dataset (SDD)

Figure 7: Generated samples of MG-GAN on the Forking Path dataset

(a) GAN+L2 (b) MG-GAN
Generator 1

(c) MG-GAN
Generator 2

(d) MG-GAN
Generator 3

(e) MG-GAN
Generator 4

(f) MG-GAN
Generator 5

Figure 8: Trajectory samples during latent space walk for the single generator model in Figure 8a and the individual generators
of MG-GAN (5) in Figures 8b to 8f.

Algorithm 1 Proposed algorithm for training MG-GAN.

Precondition: p(z) noise distribution, m batch size, {✓i}nG
i=1 set of generator weights, w weights of discriminator, ⇣ weights

of PM-Net, �Traj weighting for L2 best-of-many loss, �Cl weighting for generator classification regularization, q num-
ber of G training samples, l number of PM-Net samples

1: repeat
2: {xi}mi=1, {yi}mi=1 ⇠ pr(x, y) . Batch from real data where x is the input (observed trajectories and image crop) and

Y the ground-truth observation
3: {zi}mi=1 ⇠ p(z) . Batch from noise distribution
4: {ci}mi=1 ⇠ ⇧(xi; ⇣) . Batch of generator indices samples from PM-Net
5: {Ŷ i

g }mi=1 G(xi
, z

i; ✓ci) . Generate batch using selected generators

6: gw rw
1
m

P
i

h
lnD(xi

, y
i;w) + ln(1�D(xi

, Ŷ
i
g ;w))

i

7: w Adam(w, gw) . Optimize discriminator D
8: g� r�

1
m

P
i

h
lnC(xi

g, Ŷ
i
g ; �)

i

ci

9: � Adam(g� , �) . Update Classifier C
10:
11: {zi,j}m,q

i=1,j=1 ⇠ p(z)

12: {ci,j}m,q
i=1,j=1 ⇠ ⇧(xi; ⇣)

13: {Ŷ i,j
g }m,k

i=1,j=1,g=ci,j G(xi
, z

i,j ; ✓ci,j)

14: {ti}mi=1 minj,g
���yi � Ŷ

i,j
g

���

15: {gimin}mi=1 argming
���yi � Ŷ

i,j
g

���
16: for o 2 {1 . . . nG} do
17: g✓o r✓j

1
mk

P
i

P
j

h
lnD(xi

, Ŷ
i,j
g ;w)� �Cl lnC(xi

, Ŷ
i,j
g ; �)

i
+ �o,gi

min
�Trajt

i

18: ✓Cl Adam(g✓o , ✓o) . Optimize generators
19: end for
20:
21: {zi,j}m,l

i=1,j=1 ⇠ p(z)

22: {Ŷ i,j
o }m,l,nG

i=1,j=1,o=1 G(xi
, z

i,j ; ✓o)

23: {pi,o}m,nG
i=1,o=1 N (Ŷ i,j

o ; yi,�I)

24: g⇣ r⇣
1
m

P
i H

�
⇧(xi; ⇣), pi)

�

25: ⇣ Adam(g⇣ , ⇣) . Optimize PM-Net
26: until convergence.

