Supplementary Material

This supplementary material shows some details that were
not given in the paper due to constraints of space, including
adding an experiment about the variants of Chamfer distance
based on Welsch’s function [15], more visualization of our
comparison.

Comparison with Welsch’s Chamfer Distance

As a supplement, we also add an experiment, which
compares with variants of the chamfer distance with robust
Welsch’s function.
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where C'is a set of closest corresponding pairs, and x and
y are the sample points on S and 7 respectively, and D(-, -)
is a distance metric between each corresponding point pair,
Yy (x)=1-— exp(—%) is Welsch’s function to reduce the
influence of corresponding pairs with long distances. Here v/
is a hyperparameter that determine the sparseness. We set
vV = Vgdmed, Where deq represents the median value of all
corresponding pairs’ distances and vy is a hyperparameter.

We optimize the Lie algebraic representation of rigid
transformation with our metric and variants of chamfer dis-
tance by gradient descent method [26], and use the Human
test dataset as the benchmark in this experiment; we consider
the influence of hyperparameters, and thus choose three sets
of parameters, which are the vy = 2,19 = 0.5,19 = 0.1.
The Tab. 5 indicates that our metric is superior to variants of
chamfer distance based on Welsch’s function, and the Fig. 10
and Fig. ?? are the visualized results of variants of Chamfer
distance, and our metric on the Human dataset [1] and the
3d-Match dataset [47], respectively. It shows our metric can
generate more robust and global optimal results.

More Visualized Results Compared with Tradi-
tional Methods

We provide more visualized results compared with tra-
ditional methods, the Fig. 12 and Fig. 13 are the visualized
results of other traditional methods and our metric on the
Human dataset and the 3D-Match dataset, respectively. The
Fig. 12 shows our metric is easier to jump out of the local
optimal solution to attain the global optimal solution, but
ICP-based methods has reached the local optimum. The
Fig. 13 indicates that our metric can also achieve better re-
sults for the real data.

Table 6. Comparison with variants of chamfer distance by directly
optimizing a Lie algebra on Axyz-pose human dataset [1]. It shows
the rotation errors(degree), translation errors and piecewice errors
defined in Eq. (7).

Errg Erry ((1071) Errpy, (-107YH
Method (degrees) ({1, £2) (1, £)
CDh 5.863 0.148, 0.132 0.151,0.14
CD-W (1vy = 0.1) 12.574 0.196, 0.152 0.384, 0.304
CD-W (g = 0.5) 4.84 0.086, 0.078 0.108, 0.087
CD-W (g = 2) 1.4 0.0267,0.024  0.051, 0.043
Ours (o = 0.5)  0.576  0.017,0.013  0.018, 0.015

Figure 10. Comparison of different variants of chamfer distance on
the Human dataset.

Computation Cost of Our Metric

Tab. 7 shows the training and inference time of our metric
per iteration and compares them with the average computa-
tional time for FRICP, and model-based inference is very fast.
Although our models need take a longer time to train, after
the training, the actual registration only involves inference
which is much more efficient. Besides, our current metric
is implemented with Pytorch [27]. If in the GPU state, the
general setting requires about 15G of memory, which is also
an interesting direction that can be improved in the future.
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Figure 11. Comparison of different variants of chamfer distance on
3D-Macth datasets.
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Figure 12. Comparison with different traditional methods on the
Human dataset.

More Details of Our Experiments Setting

RPM-net framework [46]° used a less sensitive initial-
ization and more robust deep learning-based approach for
rigid point cloud registration. The metrics which used is
[ distance between the source point cloud X transformed
using the groundtruth transformation R, t4; and the pre-

Shttps://github.com/yewzijian/RPMNet
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Figure 13. Comparison with different traditional methods on the
3d-Match dataset.

Table 7. The comparison of computation time(ms) per iteration(col
2-6) and of the run in an example(col 7-8) in FRICP [48] and
our method. In our method, we count the optimized time of two
sub-processes per iteration: random straight line generation(Sam),
finding the points of intersection, and expectation calculation(Inter).
For the inference time of our method, we use DCP [41] to test.
Since this time is related to the number of point clouds and random
lines, we show the time under three different numbers of point
clouds and two different numbers of random straight lines.

#Lines: 5000 | #Lines: 20000

#Points Sam Tnter | Sam Tntor FRICP(S) || Inference | FRICP(W)
1024 36.6 504 | 464 2044 0.3 19.7 439
5000 423 1455 | 456 2362 19 20.7 2233
10000 | 45.6 1919 | 474 5444 32 22.4 379
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The overrall loss is the weighted sum of the two losses:
Liotai = Lyeg + ALiniier where we use A = 0.01 in all our
experiments for supervised learning, and use our metric and
Chamfer distance replace the L. for our experiment setting
and Chamfer distance experiment setting, respectively. We
compute the loss for every iteration ¢, but weigh the losses
by %(N"ﬂ) to give later iterations higher weights, where V;
is the total number of iteration during training.


https://github.com/yewzijian/RPMNet

DCP framework [41]°isa learning method based on dif-
ferential SVD, here the loss function to measure the model’s
agreement to the ground-truth rigid motions:

Loss = |[Ry,RY, — I|| + [ty — t, 1> + Al0]I*.

Here, g denotes ground-truth. The first two terms define a
simple distance on SFE(3). The third term denotes Tikhonov
regularization of the DCP parameters 6, which reduce the
complexity of the network. We replace the first two terms
with our metric and Chamfer distance as our experiment set-
ting and Chamfer distance experiment setting, respectively.

FMR framework [16]7 is a fast semi-supervised ap-
proach for robust point cloud registration without correspon-
dence. The loss functions in their paper are the

loss = 108sc5 + 108Spe.
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where p € A is a set of points sampled from a unit square
[0,1]2, z is a point cloud feature, ¢y, is the i*" component
in the MLP parameters, S is the original input 3D points
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where P is a point cloud, and M is its total point number. For
the unsupervised training, we only use the [oss.s; we replace
the loss with our metric as our experiment setting. And we
significantly improve the performance of the unsupervised
manners.

Extend Our Metric to SVD Solver
Regarding the discrete version of Eq. (5):
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As described in the FRICP [48], based on the
corresponding points {(x,y),(x,y) € C} =
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intersections lUA X and target intersections lUA Y;. We can
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extend our non-linear metric into quadratic by replacing the

Shttps://github.com/WangYueFt/dcp
7https://qithub.com/XiaoshuiHuanq/fmr

Welsch’s function with quadratic surrogate function, then,
we get the sum of squared distance between the points x,y.

(R*,t*) = arg min Z
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where w(x
form via SVD [

= ¢, (||x—y||2)*w;. It can be solved in closed
], which implemented with Pytorch [27].


https://github.com/WangYueFt/dcp
https://github.com/XiaoshuiHuang/fmr

